Asymmetric dihydroxylation of allylic phosphine oxides

A dam Nelson and Stuart Warren*
University Chemical Laboratory, Lensfield R oad, Cambridge, UK CB 2 1E W

Abstract

D iphenylphosphinoyl diols have been produced by asymmetric dihydroxylation (A D) of allylic phosphine oxides and have been shown to be useful synthetic intermediates. The results of this study are discussed in terms of the model which has been proposed by Sharpless to explain the enantioselectivity of his AD reaction. The dihydroxylation results are thus of both mechanistic and synthetic value.

Previously, ${ }^{1}$ we have described the synthesis of optically active terminal allylic alcohols by Horner-Wittig elimination ${ }^{2}$ of diphenylphosphinoyl diols, which were produced using the Sharpless asymmetric epoxidation reaction and a controlled Payne rearrangement. Wenow report a more direct approach to similar allylic alcohols using another reagent-based approach, the Sharpless asymmetric dihydroxylation. ${ }^{3}$ In this paper, we describe some experiments ${ }^{4}$ which have allowed the asymmetric dihydroxylation of prochiral allylic phosphine oxides 2 to be optimised. Our results can be explained in terms of the models proposed by Sharpless ${ }^{5 a, b}$ and Corey ${ }^{5 c}$ which rationalise the enantioselectivity of the asymmetric dihydroxylation reaction. Recently, diphenylphosphinoyl diols have been established as useful precursors of optically active cyclopropyl ketones ${ }^{6}$ and ligands ${ }^{7}$ for asymmetric catalysis.
Allylic phosphine oxides 2 are most usually ${ }^{8}$ synthesized using the $[2,3]$ sigmatropic Arbusov rearrangement ${ }^{9}$ of (racemic) allylic alcohols 1. A symmetric dihydroxylation of allylic phosphine oxides 2 and Horner-Wittig elimination should return enantiomerically-enriched samples of the same allylic alcohols 1 (Scheme 1). Deracemisations of carbonyl

compounds ${ }^{10}$ (by asymmetric protonation of enolates and silyl enol ethers), phosphine oxides ${ }^{11}$ and biaryls ${ }^{12}$ are also known.

Synthesis of prochiral diphenylphosphinoyl alkenes

Allylic phosphine oxides 2 a and $\mathrm{c}-\mathrm{g}$ were synthesised using the A rbusov rearrangement ${ }^{9}$ which allows control over the position and geometry of the new carbon-carbon double bond. Allylic phosphinates 4, synthesized in situ by treating allylic alcohols ${ }^{13}$ 1 with chlorodiphenylphosphine and pyridine, rearranged thermally to give allylic phosphine oxides 2 a and $\mathrm{c}-\mathrm{g}$ which could be recrystallised to give the pure E isomers in moderate yield (Scheme 2 and Table 1). The stereoselectivity of other [2,3]

sigmatropic rearrangements depends similarly on substitution. ${ }^{14}$
A lternatively, treating ca. 85:15 mixtures of bromides (E)and (Z)-5b with $\mathrm{Ph}_{2} \mathrm{PLi}$ (prepared according to the method of Ashby ${ }^{15}$), followed by oxidation with aqueous hydrogen peroxide solution, ${ }^{16}$ gave mixtures of the allylic phosphine oxides $\mathbf{2 b}$ which could be purified by a single recrystallisation (Table 2, entries 1, 2). In a similar way, we were able to synthesize cinnamyl phosphine oxide 2d (entry 3): the reaction proceeded in quantitative yield (with no detectable $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ side products) on a $30-\mathrm{g}$ scale, and was a useful alternative to the Arbusov rearrangement which was rather low yielding in this case. We also synthesized homoallylic phosphine oxide 6 by treating lithiated methyldiphenylphosphine oxide with cinnamyl bromide (Scheme 3).

(E)-5b; $\mathrm{R}^{1}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{H}$ (Z)-5b; $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Et}$ (E)-5d; $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{3}=\mathrm{H}$

(Z)-2b

(E)-2b

2d

Scheme 3

A symmetric dihydroxylation of prochiral allylic phosphine oxides using commercially available AD-mixes
As a starting point for our investigations into the asymmetric dihydroxylation of diphenylphosphinoyl alkenes, we dihydroxylated five prochiral allylic phosphine oxides 2 using

Table 1 Synthesis of allylic phosphine oxides $\mathbf{2}$ by A rbusov rearrangement

Entry	Starting material 1	M ethod ${ }^{\text {a }}$	R^{1}	R^{2}	R^{3}	$\begin{aligned} & \text { Crude ratio } \\ & E: Z \end{aligned}$	$\begin{aligned} & \text { Y ield }^{\text {c }} \\ & \mathbf{2}(\%) \end{aligned}$
1	a	A	M e	H	H	95:5	45
2	c	A	Bu	H	H	97:3	43
3	d	B	Ph	H	H	94:6	41
4	e	B	Ph	H	Me	91:9	19
5	f	A	Bu	M e	H	94:6	31
6	g	A	c-Hex	Me	H	85:15	35

${ }^{\mathrm{a}} \mathrm{M}$ ethods: A : (i) $\mathrm{Ph}_{2} \mathrm{PCl}$ (1.0 equiv.), pyridine (1.0 equiv.), ether; (ii) toluene, heat; B : (i) $\mathrm{Ph}{ }_{2} \mathrm{PCI}$ (1.05 equiv.), pyridine; (ii) pyridine, heat. ${ }^{\mathrm{b}} \mathrm{By} 400$ $\mathrm{MHz}{ }^{1} \mathrm{H} N \mathrm{NR}$. ${ }^{\mathrm{C}}$ Y ield of pure E isomer after recrystallisation.

Table 2 Synthesis of allylic phosphine oxides 2 by allylation of lithium diphenylphosphide and oxidation

Entry	Starting material	R^{1}	R^{2}	R^{3}	Product	Y ield (\%)
1	(E)-5 ${ }^{\text {a }}$	Et	H	H	(E) -2b	$59^{\text {b }}$
2	(Z)-5ba	H	H	Et	(Z)-2b	$45^{\text {b }}$
3	(E)-5d	Ph	H	H	2d	102

${ }^{\text {a }}$ A vailable as a ca. 85:15 mixture of isomers. ${ }^{\text {b }}$ Y ield of single isomer after recrystallisation.
the standard procedure and reagentst recommended by Sharpless (Table 3). ${ }^{17} \mathrm{M}$ ost of the reactions proceeded rather sluggishly and took 3-7 days to reach completion. \ddagger However, we were able to isolate diphenylphosphinoyl diols $\mathbf{3}$ in moderate to good yields.
In contrast, the dihydroxylation of homoallylic phosphine oxide 6 gave a 97% yield of diol 7 with >95\% ee (determined by comparison with a racemic sample prepared using our racemic dihydroxylation conditions ${ }^{18}$) after just 24 h (Scheme 4). Since

homoallylic phosphine oxide 6 and allylic phosphine oxides 2 a and \mathbf{c}, \mathbf{d} all contain the potentially coordinating diphenylphosphinoyl group, it is unlikely that the reactions of the allylic phosphine oxides are slowed down by coordination of the phosphinoyl group to the osmium catalyst. ${ }^{19}$ Therefore, we suggest that the alkene in allylic phosphine oxides $\mathbf{2}$ is deactivated by the electron-withdrawing nature or the size of the diphenylphosphinoyl group.
The enantiomeric excesses of diols 3a, c,d and \mathbf{h} were generally determined by integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{MR}$
\dagger The standard reagents are commericially available from Aldrich Chemical Co. as AD-mixes α and β.
$\ddagger M$ echanical stirring was necessary on a large scale.

2

3a

3c

3f

$3 i$

syn-3b

3d

3g

12

8a; $\mathrm{R}=\mathrm{Me}$
8b; $\mathrm{R}=\mathrm{Bu}$
8c; $\mathrm{R}=\mathrm{Ph}$

10
spectra of silyl ethers 8 and 9 (see entries 1-5, Table 4 for details) in the presence Pirkle's chiral solvating agent, ${ }^{20}$ (R)-1-(9-anthryl)-2,2,2-trifluoroethanol 12. The trimethylsilyl peaks

Table 3 A symmetric dihydroxylation of allylic phosphine oxides using available A D mixes

Entry	Starting material 2	$\mathrm{R}^{1} \quad \mathrm{R}^{2}$	R^{3}	M ethod ${ }^{\text {a }}$	Time	Product	Y ield (\%)	Ee (\%)
1	a	Me H	H	A	7 d	ent-3a	84	$10^{\text {b }}$
2	c	Bu H	H	A	3 d	ent-3c	$51^{\text {c }}$	49
3	d	Ph H	H	A	5 d	ent-3d	66	74
4	h	$-\left(\mathrm{CH}_{2}\right)_{4}{ }^{-}$	H	A	3 d	ent-3h	49	$18^{\text {b }}$
5	h	$-\left(\mathrm{CH}_{2}\right)_{4}-$	H	B	3 d	3h	62	$14^{\text {b }}$
6	,	$\mathrm{H}^{\text {H }}$	H	$\mathrm{A}^{\text {f }}$	$6 d^{9}$	3 i	d	e

[^0]Table 4 Silylations of diphenylphosphinoyl diols

Entry	Starting material	M ethod $^{\text {a }}$	Product	Y ield $(\%)$
$\mathbf{1}$	3a	A	$\mathbf{8 a}(\mathrm{R}=\mathrm{Me})$	63
2	3c	A	$\mathbf{8 b}(\mathrm{R}=\mathrm{Bu})$	95
3	3d	A	$\mathbf{8 c}(\mathrm{R}=\mathrm{Ph})$	73
4	ent-3h	A	$\mathbf{9}$	86
5	$\mathbf{7}$	A	$\mathbf{1 0}$	53
6	3c	B	$\mathbf{1 1}$	66

${ }^{\text {a }}$ M ethods: $\mathrm{A}: \mathrm{M} \mathrm{e}_{3} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; B: TBDM SOTf, 2,6-dimethylpyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.
appeared at least 1 ppm upfield of the other signals and provided a useful handle for the determination of enantiomeric excess.

The enantiomeric excesses of diols $3 \mathbf{a}$ and \mathbf{c}, \mathbf{d} were rather disappointing when compared with those reported for other dihydroxylations (entries 1-3, Table 3). ${ }^{3,17}$ Within this series of compounds, the enantiomeric excess of diols $\mathbf{3}$ increases with the ability of the group trans to phosphorus to be stabilised by solvophobic and π-interactions: varying this group from methyl to butyl to phenyl caused the enantiomeric excess of diols $\mathbf{3}$ to increase from 10 to 49 to 74%. We suggest that the group trans to phosphorus (and not the diphenylphosphinoylmethyl group §) is bound in the pocket formed by the chiral ligand (Fig. 1). ${ }^{5}$ This hypothesis neatly rationalises the variation of the enantiomeric excesses of diols $3 \mathbf{a}$ and \mathbf{c}, \mathbf{d}, and suggests that their absolute stereochemistry can be deduced by placing the substituent trans to phosphorus in the attractive 'south-western' quadrant of Sharpless's model. ${ }^{3}$ Substrate ${ }^{22} \mathbf{2 i}$, which lacks a substituent trans to phosphorus, does not enjoy the benefits of ligandaccelerated catalysis and was dihydroxylated very slowly indeed (entry 6, Table 3).

Allylic phosphine oxide ${ }^{23} \mathbf{2 h}$ has substituents trans and gem to phosphorus which can compete for the cleft of the chiral ligand. In this case, competition for the cleft is reflected by the enantioselectivity of the reaction: the asymmetric induction is low, presumably because the two substituents (which both form part of the same six-membered ring) are able to compete on even terms for the L-shaped cleft of the chiral ligand (entries 4, 5, Table 3).
The diphenylphosphinoylmethyl group, like other large allylic substituents, ${ }^{3}$ has a detrimental effect on the enantioselectivity of the AD reaction. ${ }^{24}$ We suggest that a bulky allylic substituent trans to the stabilised group (which points away from the 'working' alkaloid unit) interferes sterically with the by-stander alkaloid portion of the 'dimeric' ligands (Fig. 1).

0 ptimisation of the conditions for the asymmetric dihydroxylation of allylic phosphine oxides

The enantiomeric excess of the diol 3d was improved from 74\% ee with $1 \mathrm{~mol} \%$ ligand to 85% ee with more ligand (Table 5). There was also a marked improvement in the yield of the reaction. We suggest that increasing the quantity of chiral ligand causes the reaction of (achiral) uncomplexed osmium tetroxide with allylic phosphine oxide 2d to become insignificant, so the enantiomeric excess of the diol 3d increases asymptotically towards 85% ee as more material is drawn through the enantioselective pathway.

We also studied some asymmetric dihydroxylations catalysed by the 'monomeric' ligands D H QD-CLB and DH QD-PH N. In these experiments, we mixed the allylic phosphine oxide with all of the ingredients needed for the dihydroxylation except the osmium source A fter vigorous stirring for 30 min at room tem-
§ The sense of the enantioselectivity of the AD reactions of 1,1 gemdisubstituted allylic phosphine oxides suggests that the diphenylphosphinoylmethyl group cannot fit snugly into the L-shaped cleft formed by the dihydroxylation catalyst. ${ }^{21}$

Table 5 A symmetric dihydroxylation of allylic phosphine oxide 2d

Entry	Reagents $^{\text {a }}$	DHQD_{2}-PHAL $(\mathrm{mol} \%)$	Y ield 3d (\%)	Ee $(\%)$
1	A	$1.0^{\text {b }}$	66	74
2	B	2.5	72	84
3	$\mathrm{~B}^{\mathrm{c}}$	5.0	49	85
4	B	7.5	94	85

${ }^{\text {a }}$ R eagents: A. A D -mix $\alpha, \mathrm{M} \mathrm{eSO}_{2} \mathrm{NH}_{2}$ (1.0 equiv.); B. OsCl_{3} ($1.5 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.0 equiv.), $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (3.0 equiv.), $\mathrm{M} \mathrm{eSO}_{2} \mathrm{NH}_{2}$ (1.0 equiv.). ${ }^{6} A D$-mix α contains $\mathrm{DHQ}_{2}-P H A L$. ${ }^{\mathrm{C} A D}$ mix β was enriched with OsCl_{3} and $\mathrm{DHQD}_{2}-\mathrm{PHAL}$.

Fig. 1

perature, osmium trichloride ($1 \mathrm{~mol} \%$) was added. \uparrow The reactions were monitored by TLC and, after 1-5 days, we were able to isolate good to excellent yields of diphenylphosphinoyl diols 3a-h. Enantiomeric excesses were determined by integration of the ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectra of silyl ethers $\mathbf{8}$ and 9 in the presence of Pirkle's chiral solvating agent 12, or by preparing the M osher's esters ${ }^{26}$ of alcohols ${ }^{6} \mathbf{1 3}$. Our results are presented in Table 6.

With trans-disubstituted allylic phosphine oxides 2a-d, the monomeric ligands DHQD-CLB and DHQD-PHN offered substantial advantages over the phthalazine ligands contained in the AD mixes: in each case, we isolated higher yields of diphenylphosphinoyl diols 3a-d with higher enantiomeric excesses than under the standard AD reaction conditions (compare entries 1-3, Table 3 with entries 1-7, Table 6).
A gain, the enantiomeric excesses of the diols 3a-d improved with the ability of the group trans to phosphorus to be stabilised by solvophobic and π-interactions: the enantiomeric excesses (with the ligand DHQD-CLB) increased steadily from 46 to 86% ee as the R^{1} group was changed from methyl to ethyl to butyl to phenyl. Fig. 2 rationalises this result in terms of Sharpless's model: ${ }^{5 \mathrm{a}, \mathrm{b}}$ in particular, favourable face-toface interactions between the phenyl ring of the substrate and

[^1]Table 6 A symmetric dihydroxylation of allylic phosphine oxides using 'monomeric' ligands

Entry	Starting material	R^{1}	R^{2}	R^{3}	Chiral ligand	Ligand (mol\%)	$\begin{aligned} & \text { Y ield } \\ & \mathbf{3} \text { (\%) } \end{aligned}$	Ee (\%)
1	2a	M e	H	H	DHQD-CLB	15	94	46
2	(E)-2b	Et	H	H	DHQD-CLB	15	103	$76^{\text {a }}$
3	2c	Bu	H	H	DHQD-CLB	2	64	58
4	2c	Bu	H	H	DHQD-CLB	15	$57^{\text {b }}$	76
5	2c	Bu	H	H	DHQD-PHN	25	70	75
6	2d	Ph	H	H	DHQD-CLB	15	79	86
7	2d	Ph	H	H	DHQD-PHN	25	79	88
8	(Z)-2b	H	H	Et	DHQD-CLB	15	55	$22^{\text {a }}$
9	2 e	Ph	H	Me	DHQD-CLB	15	64	42
10	2 f	Bu	M e	H	DHQD-CLB	15	103	74
11	2 g	$\mathrm{c}-\mathrm{H}$ ex	Me	H	DHQD-CLB	15	96	84
12	2h	-(CH	4^{-}	H	DHQD-CLB	15	60	$62^{\text {c }}$
13	2h	-(CH	4^{-}	H	DHQD-PHN	25	62	$38^{\text {c }}$

${ }^{\text {a }}$ A bsolute configuration at chiral centre γ to phosphorus shown to be the same by conversion into a common intermediate $13(\mathrm{R}=\mathrm{Et}) .{ }^{\mathbf{3 0} \mathrm{b}} \mathrm{I}$ solated in 90% yield on a 6.5 g scale with mechanical stirring. ${ }^{\text {c }} \mathrm{A}$ bsolute configuration uncertain

Table 7 A ttempted H orner-W ittig eliminations

Entry	Starting materials	Reagents $^{\text {a }}$	R esult
$\mathbf{1}$	$\mathbf{1 1}$	A	K etone 17a isolated in 26\% yield
2	ent-3d	A	K etone 17b isolated in 31\% yield
3	3d	B	Starting material only by N M R
4	3d	C	K etone 17b isolated in 39\% yield

${ }^{\text {a R R eagents: } A . K O H, D M S O}, 55^{\circ} \mathrm{C}$; B. DBU, DMSO, $50^{\circ} \mathrm{C}$; C. TBAF, THF, heat.

Fig. 2
the ligand are possible without forcing the extremely large diphenylphosphinoylmethyl group into a sterically unfavourable position.

High quantities of chiral ligand ($10-25 \mathrm{~mol} \%$) were necessary for optimal enantiomeric excesses: reduction of the amount of DHQD-CLB to just $2 \mathrm{~mol} \%$ compromised the enantiomeric excess of diol 3c (compare entries 3 and 4, Table 6). A gain, we believe that higher levels of ligand channel a greater proportion of the allylic phosphine oxide $\mathbf{2 c}$ through the enantioselective amine-catalysed pathway.

We also studied the asymmetric dihydroxylation of allylic phosphine oxides with other substitution patterns [substrates (Z)-2b and 2e-h; Table 6, entries 8-13]. The dihydroxylation of (Z)-2b was poor, both in terms of yield and enantiomeric excess. The asymmetric dihydroxylation of cis-alkenes is often poor, ${ }^{27}$ perhaps because one of the substituents must occupy the very hindered position C on the four-membered ring of the proposed ${ }^{50, b}$ osmaoxetane intermediate (Fig . 3).

Dihydroxylation of trisubstituted allylic phosphine oxides $\mathbf{2 e - h}$ was considerably more successful (entries $9-13$, Table6). In particular, phosphine oxide $2 f$ reacted very much as if the methyl group gem to phosphorus was not present at all, giving diol $\mathbf{3 f}$ in a respectable 74% ee (compare entries 4 and 10, Table 6). A Ithough thegem substituent of allylic phosphine oxides can be bound in the chiral pocket, it seems reasonable that the substituent trans to phosphorus occupies this privileged position, leaving the large diphenylphosphinoylmethyl group held clear of the dihydroxylation catalyst in the open B position (Fig. 3).

Fig. 3
The new reaction conditions (with monomeric ligands) were particularly successful with the trisubstituted allylic phosphine oxide $\mathbf{2 h}$: we observed a spectacular improvement from 14% ee with AD-mix β to 62% ee with the monomeric ligand DH QD-CLB. In this case, the DH QD-CLB ligand is considerably better than its cousin DHQD-PHN

Summary of the dihydroxylation results

A symmetric dihydroxylation of allylic phosphine oxides is most enantioselective when the monomeric ligand DHQDCLB is used and, under these conditions, the enantiomeric excesses obtained are comparable to those reported for related compounds. ${ }^{28}$ The enantioselectivity of these asymmetric dihydroxylations depends critically on the substitution of the allylic phosphine oxide 2, and can be rationalised by proposing that the diphenylphosphinoylmethyl group is never bound in the L-shaped cleft of the dihydroxylation catalyst.

The asymmetric dihydroxylation of allylic silanes ${ }^{24}$ and allylic phosphine oxides have several features in common. In particular, the enantioselectivity of the reactions is not improved by replacing the monomeric ligands DHQD-CLB with the generally better dimeric ligands which are found in the AD mixes. We believe that a large allylic substituent may interact badly with the 'by-stander' alkaloid unit of the dimeric ligands (Fig. 1). The removal of this alkaloid unit does remove this poor steric interaction, but it does so at a cost: binding is less favourable because edgeto-face interactions between the bound alkene substituent and the by-stander aromatic ring are lost. ${ }^{5}$ L arge quantities of the monomeric ligands are needed to ensure that none of the substrate reacts with the uncomplexed osmium tetroxide. It is only worth using the monomeric class of ligands when the alkene substituent trans to the group bound by the chiral ligand is particularly large.

H orner-W ittig eliminations

Our attempts to make allylic alcohols 1 from diphenylphosphinoyl diols $\mathbf{3}$ were only partially successful. Silyl ether 11 (synthesized by treating diol 3c with 2,6-dimethylpyridine and tert-butyldimethylsilyl triflate; entry 6, Table 4) and diols 3 were treated with 3-4 equiv. of base under conditions known to promote the H orner-Wittig elimination (Scheme 5 and Table 7,
entries 1-3). ${ }^{29}$ Only the most reliable conditions for the elimination (KOH in DM SO and NaH in DM F) led to the formation of any allylic alcohols, and even these reactions were low yielding (Scheme 5). The H orner-Wittig eliminations of sulfides 14

(which are also β, γ-dihydroxy phosphine oxides) were also plagued by side-reactions. ${ }^{1}$

The by-products from our attempted Horner-Wittig eliminations were γ-keto phosphine oxides 17 , suggesting that

13

21

14
elimination of hydroxide from diols 3, and tautomerisation, was competitive with the required olefination (Scheme 6). \| Some

evidence for this chain of events can be gleaned from the H orner-Wittig eliminations of some diphenylphosphinoyl diols 19 which were synthesized by a pinacol coupling reaction (Scheme 7). ${ }^{31}$ W ith these tertiary phosphine oxides, high yields of allylic alcohols 20 wereobtained, perhaps because deprotonation α to phosphorus was not possible.

Our threestep deracemisation of allylic alcohols 1 (Scheme 1) was lower yielding and less enantioselective than other approaches to similar compounds. ${ }^{24,32}$ In particular, our reaction sequence did not compare favourably with the kinetic reso-

[^2]

18

20

Scheme 7

lution ${ }^{33}$ of allylic alcohols using the Sharpless asymmetric epoxidation. ${ }^{34}$

Conclusions

A symmetric dihydroxylation of allylic phosphine oxides is most enantioselective when the 'monomeric' ligand DH QD-CLB is used in place of the 'dimeric' phthalazine ligands which form part of the commercially available AD-mixes. The magnitude and the sense of the enantioselectivity of these AD reactions can be rationalised by proposing that the diphenylphosphinoylmethyl group is never bound in the chiral pocket ${ }^{5}$ of the ligand. The resulting diphenylphosphinoyl diols are useful intermediates in the synthesis of optically active cyclopropyl ketones ${ }^{6}$ and allylic alcohols $\mathbf{1}$, and are potential intermediates in the synthesis of ligands for asymmetric catalysis. ${ }^{7}$

Experimental

All solvents were distilled before use. THF and $\mathrm{Et}_{2} \mathrm{O}$ were freshly distilled from lithium aluminium hydride whilst $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene were freshly distilled from calcium hydride. Triphenylmethane was used as an indicator for THF. DMF, DM SO, triethylamine and chlorotrimethylsilane were dried by stirring over and distilling from calcium hydride (at reduced pressure when necessary) and were then stored over activated $4 \AA$ molecular sieves. Butyllithium wastitrated against diphenylacetic acid before use. All non-aqueous reactions were carried out under argon using oven-dried glassware.

Flash column chromatography ${ }^{35}$ was carried out using M erck K ieselgel 60 (230-400 mesh). Thin layer chromatography was carried out on commercially available pre-coated plates (M erck silica K ieselgel $60 \mathrm{~F}_{254}$).
Proton and carbon N M R spectra were recorded on a Bruker WM 200, WM 250, WM 400 or WM 500 Fourier transform spectrometers using an internal deuterium lock. Values of coupling constants (J) are given in Hz and chemical shifts (δ) in parts per million downfield of tetramethylsilane (ppm). The symbol * after the proton NM R chemical shift indicated that the signal disappears after a $\mathrm{D}_{2} \mathrm{O}$ 'shake'. Carbon N M R spectra were recorded with broad band proton decoupling and A ttached Proton Test (APT). The symbols ${ }^{+}$and ${ }^{-}$after the carbon NM R chemical shift indicate odd and even numbers of attached protons respectively.

M elting points were measured on a Reichart hot-stage microscope or a Büchi 510 melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-EImer 1600 (FT-IR) spectrophotometer. M ass spectra were recorded on a K ratos double-beam mass spectrometer using a D S503 data system for high-resolution analysis. M icroanalyses were carried out by the staff of the U niversity Chemical Laboratory using Carlo Erba 1106 or Perkin-E Imer 240 automatic analysers.
Optical rotations were recorded on a Perkin-E Imer 241 polarimeter (using the sodium D line; 589 nm) and [$a]_{0}^{20}$ are given in
units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. (R)-Pirkle's reagent is (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol.

G eneral method for the determination of enantiomeric excess using Pirkle's chiral solvating agent

A $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} \mathrm{N}$ MR spectrum of the optically active phosphine oxide was recorded in the absence of additives. Then, a sample containing 1 mg of optically active phosphine oxide and ca. $4-6 \mathrm{mg}$ of Pirkle's chiral solvating agent (3-4 equiv.) was prepared in $\mathrm{CDCl}_{3}\left(1.5 \mathrm{~cm}^{3}\right)$. The $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} \mathrm{NM}$ R spectrum of this sample was recorded and the peaks corresponding to the individual enantiomers identified. If no splitting was detected, a further Pirkle's reagent ($4-6 \mathrm{mg}$) was added and another 400 M Hz ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectrum was recorded. The accurate enantiomeric excesses were determined by integration of the ${ }^{1} H N M R$ spectra in the presence of Pirkle's reagent.

G eneral procedure for the preparation of M osher's esters

By the method of M osher, ${ }^{26 \mathrm{a}}$ (R)- α-methoxy- α-(trifluoromethyl)phenylacetyl chloride ($8 \mu \mathrm{l}, 36 \mu \mathrm{~mol}$) was added to a stirred solution of the alcohol ($30 \mu \mathrm{~mol}$) in carbon tetrachloride (3 drops) and pyridine (3 drops). The reaction mixture was stirred for 6 h , diluted with diethyl ether ($10 \mathrm{~cm}^{3}$), washed with hydrochloric acid ($5 \mathrm{~cm}^{3}$), saturated aqueous sodium carbonate ($5 \mathrm{~cm}^{3}$) and water ($5 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product.

G eneral procedure for A rbusov rearrangement of allylic alcohols 1

A solution of chlorodiphenylphosphine ($2.22 \mathrm{~g}, 10.0 \mathrm{mmol}$) in degassed ether ($10 \mathrm{~cm}^{3}$) was added by cannula to a stirred solution of the allylic alcohol (10.0 mmol) and pyridine (0.78 g , 10.0 mmol) in degassed ether ($10 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ under argon. The solution was gradually warmed to $20^{\circ} \mathrm{C}$ and stirred for 30 min to give a white suspension. The suspension was filtered under argon using a Schlenk tube, evaporated under reduced pressure and refluxed in toluene ($10 \mathrm{~cm}^{3}$) for 16 h . The reaction was quenched by the addition of saturated aqueous ammonium chloride ($20 \mathrm{~cm}^{3}$). The aqueous fraction was separated and extracted with dichloromethane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$, and the combined organic layer and extract were washed with saturated aqueous sodium hydrogen carbonate ($20 \mathrm{~cm}^{3}$), dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated under reduced pressureto give a crude product.

(E)-1-D iphenylphosphinoylbut-2-ene 2a

By the general method described above, but-3-en-2-ol 1a (1.66 $\mathrm{g}, 23.1 \mathrm{mmol}$) gave a crude product which was purified by flash chromatography, eluting with EtOAc, to yield a white solid. Integration of the ${ }^{1} \mathrm{H}$ NMR spectrum revealed that the $\mathrm{E}: \mathrm{Z}$ ratio was 95:5. Recrystallisation from EtOAc gave the allylic phosphine oxide 2a ($2.66 \mathrm{~g}, 45 \%$) as needles, $\mathrm{mp} 104-106^{\circ} \mathrm{C}$ (from EtOA c-hexane) (lit., ${ }^{9} \quad 90-91^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}($ EtOAc) 0.24 (Found: C, 75.1; H, 6.65; P, 12.4\%; M ${ }^{+}$, 256.1026. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{OP}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 6.70 ; \mathrm{P}, 12.1 \% ; \mathrm{M}, 256.1018$); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1436(\mathrm{P}-\mathrm{Ph})$ and $1182(\mathrm{P}=0)$; $\delta_{\mathrm{H}}(250 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 8.0-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.7-5.3(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$, $3.05\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 1,7\right.$ and ${ }^{2} \mathrm{~J}_{\mathrm{PH}} 15, \mathrm{PCH}_{2}$) and $1.60(3 \mathrm{H}$, ddd, J 1,6 and $\left.{ }^{5}{ }_{\mathrm{PH}} 6, \mathrm{Me}\right) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 134-127\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}$), $119.0^{+}\left(\mathrm{d},{ }^{2}{ }^{\mathrm{J}} \mathrm{PC} 9, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right), 34.6^{-}\left(\mathrm{d},{ }^{1}{ }^{1}{ }_{\mathrm{pc}} 70\right.$, PCH_{2}) and $18.1^{+}\left(\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{pc}}, \mathrm{Me}\right) ; \mathrm{m} / \mathrm{z} 256.1\left(75 \%, \mathrm{M}^{+}\right), 201.0$ (100, $\mathrm{Ph}_{2} \mathrm{PO}$) and 77.0 ($80, \mathrm{Ph}$).

(E)-1-D iphenyIphosphinoyIhept-2-ene 2c

By the general method described above, hept-1-en-3-ol ${ }^{13 a}$ 1c $(2.00 \mathrm{~g}, 17.5 \mathrm{mmol})$ gave a crude product which was purified by flash chromatography, eluting with EtOA c, to yield a white solid. Integration of the ${ }^{1} \mathrm{H}$ N M R spectrum revealed that the $\mathrm{E}: \mathrm{Z}$ ratio was 97:3. Recrystallisation from EtOAc gave the allylic phosphine oxide $\mathbf{2 c}(2.26 \mathrm{~g}, 43 \%)$ as prisms, $\mathrm{mp} 51-53^{\circ} \mathrm{C}$
(from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}\left(\mathrm{EtOA}\right.$ c) 0.34 (Found: M^{+}, 298.1486. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{OP}$ requires M , 298.1487); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1437$ ($\mathrm{P}-\mathrm{Ph}$) and $1184(\mathrm{P}=0)$) $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.8-7.3(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 5.40(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 3.05\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6\right.$ and ${ }^{2} \mathrm{~J}_{\mathrm{PH}} 14$, PCH 2), $1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CCH}_{2}\right), 1.3-1.0\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$ and $0.80(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{M} \mathrm{e}) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}{ }_{3}\right) 137.5^{+}\left(\mathrm{d},{ }^{3}\right)_{\mathrm{pc}} 12$, $\left.\mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right), 134-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 118.0^{+}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{PC}} 12, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\right.$ $\left.\mathrm{C}_{\mathrm{B}} \mathrm{H}\right), 35.0^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 69, \mathrm{PCH}_{2}\right), 32.3^{-}, 31.2^{-}\left(\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{Pc}} 3\right.$, $\left.\mathrm{C}=\mathrm{CCH}_{2}\right), 21.9^{-}$and $13.8^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z} 298.1\left(80 \%, \mathrm{M}^{+}\right)$and 201.0 (100, $\mathrm{Ph}_{2} \mathrm{PO}$).

(E)-1-D iphenylphosphinoyl-2-methylhept-2-ene 2f

By the general method described above, 2-methylhept-1-en-3ol ${ }^{13 \mathrm{~b}} 1 \mathrm{f}(2.00 \mathrm{~g}, 16.5 \mathrm{mmol})$, pyridine ($1.14 \mathrm{~cm}^{3}, 14.1 \mathrm{mmol}$) and chlorodiphenylphosphine ($2.53 \mathrm{~cm}^{3}, 14.1 \mathrm{mmol}$) gave a crude product which was purified by flash chromatography, eluting with EtOA c, to yield a white solid ($3.09 \mathrm{~g}, 64 \%$). Integration of the ${ }^{1} H N M R$ spectrum of this revealed that the $E: Z$ ratio was 94:6. Recrystallisation from EtOA c-hexane gave the allylic phosphine oxide $2 f(1.49 \mathrm{~g}, 31 \%)$ as needles, $\mathrm{mp} 67-68^{\circ} \mathrm{C}$ (from EtOA c-hexane); R f(EtOAc) 0.39 (Found: C, 76.6; H, 8.00; P, $10.0 \% ; \mathrm{M} \mathrm{H}^{+}, 313.1733 . \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{OP}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}, 8.05 ; \mathrm{P}$, 9.9\%; M H, 313.1721); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1632$ ($\mathrm{C}=\mathrm{C}$), 1438 ($\mathrm{P}-\mathrm{Ph}$) and $1172(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.9-7.4(10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$), $5.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C}), 3.06\left(2 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{pH}} 14, \mathrm{PCH}_{2}\right.$), $1.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CCH}_{2}\right), 1.70(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}), 1.2-1.0(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{CH}_{2}\right)$ and $0.79(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} \mathrm{I}_{3}\right) 132.8^{-}$ ($\mathrm{d},{ }^{1}{ }_{\mathrm{pc}} 97$, ipso-PPh), 131-125 (m, $\mathrm{Ph}_{2} \mathrm{PO}$ and $\mathrm{CH}=\mathrm{C}$), 110.0^{+} $(\mathrm{CH}=\mathrm{C}), 40.6^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 68, \mathrm{PCH}_{2}\right), 31.1^{-}\left(\mathrm{d},{ }^{4} \mathrm{~J}_{\mathrm{pc}} 3\right), 27.4^{-}$, $21.6^{-}, 17.7^{+}(\mathrm{M} \mathrm{e})$ and $13.6^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z} 313.3\left(100 \%, \mathrm{M} \mathrm{H}^{+}\right)$and 201.2 (40, $\mathrm{Ph}_{2} \mathrm{PO}$).
(E)-1-C yclohex yl-3-diphenylphosphinoyl-2-methylprop-1-ene 2 g By the general method described above, 1-cyclohexyl-2-methylprop-2-en-1-ol ${ }^{13 \mathrm{c}} 1 \mathrm{~g}(3.35 \mathrm{~g}, 21.8 \mathrm{mmol})$, pyridine (1.59 $\mathrm{cm}^{3}, 19.7 \mathrm{mmol}$) and chlorodiphenylphosphine ($2.53 \mathrm{~cm}^{3}, 14.1$ mmol) gave a crude product which was purified by flash chromatography, eluting with EtOAc, to yield a white solid ($4.52 \mathrm{~g}, 62 \%$). Integration of the ${ }^{1} \mathrm{H}$ N M R spectrum revealed that the $\mathrm{E}: \mathrm{Z}$ ratio was $85: 15$. Recrystallisation from EtOA chexane gave the allylic phosphine oxide $2 \mathrm{~g}(2.50 \mathrm{~g}, 34 \%)$ as plates, $m p 120-123^{\circ} \mathrm{C}$ (from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOA} \mathrm{c}) 0.35$ (Found: C, 77.7; H, 9.10; P, 8.1\%; M^{+}, 338.1803. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{OP}$ requires C, 78.1; H, 9.15; P, 8.0\%; M, 338.1799); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 1648(\mathrm{C}=\mathrm{C})$, $1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}(250$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $7.8-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C})$, 2.93 ($2 \mathrm{H}, \mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{PH}} 14, \mathrm{PCH}_{2}$) and 1.8-0.6 (13 H); $\delta_{\mathrm{C}}(63 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 137.1^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 11, \mathrm{CH}=\mathrm{C}\right), 133-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and $\mathrm{CH}=\mathrm{C}), 112.1^{-}(\mathrm{CMe=C}), 40.3^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 67, \mathrm{PCH}_{2}\right)$ and $40-20$ (m); m/z $338.2\left(70 \%, \mathrm{M}^{+}\right)$and 202.1 ($100, \mathrm{Ph}_{2} \mathrm{PO}$).

General procedure for Arbusov rearrangement of allylic alcohols

 2Chlorodiphenylphosphine ($2.27 \mathrm{~g}, 10.8 \mathrm{mmol}$) was added dropwise to a stirred solution of the allylic alcohol (10.0 mmol) in pyridine ($30 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ under argon. The solution was stirred for 2 h under argon at $20^{\circ} \mathrm{C}$ and then refluxed for 16 h . The crude reaction mixture was evaporated under reduced pressure, diluted with dichloromethane ($30 \mathrm{~cm}^{3}$), washed with dilute aqueous hydrochloric acid ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 3 \times 30 \mathrm{~cm}^{3}$), saturated aqueous sodium hydrogen carbonate ($30 \mathrm{~cm}^{3}$) and water $\left(30 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to yield a crude product.

(E)-3-D iphenylphosphinoyl-1-phenylprop-1-ene 2d

By the general method decribed above, 1-phenylprop-2-en-1ol ${ }^{13 \mathrm{~d}} 1 \mathrm{dd}(1.64 \mathrm{~g}, 12.3 \mathrm{mmol})$ gave a crude product which was purified by flash chromatography, eluting with EtOA c-hexane (2:1), to yield a white solid. Integration of the ${ }^{1} \mathrm{H}$ NM R spectrum of this revealed that the $E: Z$ ratio was $94: 6$. Recrystal-
lisation from hexane-EtOA c gave the allylic phosphine oxide 2d ($1.61 \mathrm{~g}, 41 \%$) as needles, $\mathrm{mp} 182-184^{\circ} \mathrm{C}$ (from EtOA c) (lit., ${ }^{9}$ 181-182 ${ }^{\circ} \mathrm{C}$); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAC}) 0.32$ (Found: C, 79.4; H, 6.05; P, 9.8\%; $\mathrm{M}^{+}, 318.1171 . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{OP}$ requires $\mathrm{C}, 79.2 ; \mathrm{H}, 6.00 ; \mathrm{P}, 9.7 \% ; \mathrm{M}$, 318.1173); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1437(\mathrm{P}-\mathrm{Ph})$ and $1184(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right) 7.9-7.1\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 6.41$ (1 H , ddd, J $1,{ }^{4}$) PH 4 and J $\left.16, \mathrm{PhCH}=\mathrm{CH}\right), 6.16\left(1 \mathrm{H}, \mathrm{dtd},{ }^{3}{ }^{3} \mathrm{PH} 6\right.$, J 7 and J $16, \mathrm{PhCH}=\mathrm{CH}$) and $3.29\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 1,7\right.$ and ${ }^{2} \mathrm{~J}_{\mathrm{PH}} 15$, $\left.\mathrm{PCH}_{2}\right) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 135.6^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{PC}} 12, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right)$, 132-126 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 118.5 ${ }^{+}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{PC}} 9, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right)$ and 35.6^{-} (d, $\left.{ }^{1}\right)_{\text {pc }} 69, \mathrm{PCH}_{2}$); m/z $318.1\left(65 \%, \mathrm{M}^{+}\right.$) and 201.1 (100 , $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

(E) -1-D iphenyIphosphinoyl-3-phenylbut-2-ene 2e

By the general method described above, 2-phenylbut-3-en-2ol ${ }^{13 \mathrm{e}} \mathbf{1 e}$ ($453 \mathrm{mg}, 3.03 \mathrm{mmol}$) gave a white solid. Integration of the ${ }^{1} H$ NMR spectrum revealed that the $E: Z$ ratio was $91: 9$. Recrystallisation from EtOA c gave the allylic phosphine oxide 2 e ($185 \mathrm{mg}, 19 \%$) as needles, $\mathrm{mp} 143-144{ }^{\circ} \mathrm{C}$ (from EtOA c); $\mathrm{R}_{\mathrm{f}}{ }^{-}$ (EtOAc) 0.36 (Found: $\mathrm{M}^{+}, 332.1340 . \mathrm{C}_{22} \mathrm{H}_{21} \mathrm{OP}$ requires M , 332.1340); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1630(\mathrm{C}=\mathrm{C}), 1437$ (P-Ph) and 1180 ($\mathrm{P}=0$) ; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 8.0-7.1 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}, \mathrm{Ph}$ and $\mathrm{CH}=\mathrm{CH}$ ePh $)$, $5.77(1 \mathrm{H}, \mathrm{dq}, \mathrm{J} 1$ and $7, \mathrm{CH}=\mathrm{C}), 3.28(2 \mathrm{H}$, dd, $\mathrm{J}_{\text {H }} 7$ and ${ }^{2} \mathrm{~J}_{\mathrm{PH}} 15, \mathrm{PCH}_{2}$) and $1.81\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1\right.$ and ${ }^{5} \mathrm{~J}_{\mathrm{PH}} 3$, $\mathrm{Me}) ; \delta_{\mathrm{C}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 145-125\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}}\right.$ and $\left.\mathrm{Ph}), 116.1^{+}\left(\mathrm{d},{ }^{2}\right)_{\mathrm{pc}} 9, \mathrm{PCH}_{2} \mathrm{CH}=\mathrm{C}\right), 32.0^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 69, \mathrm{PCH}_{2}\right)$ and $16.3^{+}(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z} 332.1\left(45 \%, \mathrm{M}^{+}\right), 201.0\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $77.0(55, \mathrm{Ph})$. The geometry of the double bond was confirmed by a reciprocal NOE between $\mathrm{CH}=\mathrm{C}$ and Me .

G eneral procedure for the synthesis of allylic phosphine oxides by allylation of lithium diphenylphosphide

Butyllithium ($1.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexanes; $80 \mathrm{~cm}^{3}, 112$ mmol) was added dropwise to a solution of diphenylphosphine ($18.3 \mathrm{~g}, 99 \mathrm{mmol}$) in TH F $\left(250 \mathrm{~cm}^{3}\right.$) at $-30^{\circ} \mathrm{C}$ to give an orange coloured solution. The reaction mixture was then allowed to warm slowly to room temperature over 4 h . The dark-red solution was cooled to $-78^{\circ} \mathrm{C}$, and the allyl bromide (114 mmol) in TH F ($15 \mathrm{~cm}^{3}$) was added to it by cannula. The reaction mixture was then allowed to warm slowly to room temperature overnight, after which it was treated with hydrogen peroxide (100 vol; $30 \mathrm{~cm}^{3}$), added dropwise, and stirred for 1 h . Saturated aqueous ammonium chloride was added ($200 \mathrm{~cm}^{3}$) to the mixture after which the layers were separated, and the aqueous layer was extracted with dichloromethane ($3 \times 100 \mathrm{~cm}^{3}$). The combined extracts were washed with brine, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product.

(E)-3-D iphenylphosphinoyl-1-phenylprop-1-ene 2d

By the general method described above, butyllithium (1.4 mol dm^{-3} solution in hexanes; $80 \mathrm{~cm}^{3}, 112 \mathrm{mmol}$), diphenylphosphine ($18.3 \mathrm{~g}, 99 \mathrm{mmol}$) and cinnamyl bromide (22.5 g , 114 mmol) gave the allylic phosphine oxide 2d ($32.5 \mathrm{~g}, 102 \%$) as needles, mp 182-184 ${ }^{\circ} \mathrm{C}$ (from EtOA c-hexane), identical spectroscopically with that synthesized previously.

(Z)-1-D iphenyIphosphinoyIpent-2-ene 2b

By the general method described above, butyllithium (1.3 mol dm^{-3} solution in hexanes; $5.7 \mathrm{~cm}^{3}, 7.4 \mathrm{mmol}$), diphenylphosphine ($1.28 \mathrm{~cm}^{3}, 6.8 \mathrm{mmol}$) and (Z)-1-bromopent-2-ene $(1.0 \mathrm{~g}, 6.8 \mathrm{mmol})$ gave the allylic phosphine oxide (Z) $\mathbf{- 2 b}$ (1.60 $\mathrm{g}, 87 \%$) as a white solid. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{M} \mathrm{R}$ of this material indicated an $Z: E$ ratio of $89: 11$. Recrystallisation from EtOA c-hexane gave the allylic phosphine oxide (Z)$\mathbf{2 b}(0.82 \mathrm{~g}, 45 \%)$ as needles, $\mathrm{mp} 94-95^{\circ} \mathrm{C}$ (from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.29$ (Found: C, 75.8; H, 6.65; P, 11.8\%; M ${ }^{+}$, 270.1172. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{OP}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 7.05 ; \mathrm{P}, 11.4 \%$; M , 272.1171); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1632(\mathrm{C}=\mathrm{C}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1189(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) $7.6-7.5(4 \mathrm{H}, \mathrm{m}), 7.3-7.15$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.35\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 5.23(1 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 2.98\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8\right.$ and $\left.^{2} \mathrm{~J}_{\mathrm{PH}} 15, \mathrm{PCH}_{2}\right), 1.70(2 \mathrm{H}, \mathrm{m})$ and $0.60(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{Me})$; $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 136.8^{+}$(d , $\left.3^{3}{ }_{\mathrm{PC}} 12, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right), 132.5-126\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 116.5^{+}\left(\mathrm{d},{ }^{2}{ }^{\mathrm{PCC}} 9\right.$, $\left.\mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right), 34.5^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 69, \mathrm{PCH}_{2}\right), 20.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{pc}} 1\right)$ and $13.9^{+}(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z} 318.1\left(22 \%, \mathrm{M}^{+}\right)$and 201.1 (100, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

(E)-1-D iphenylphosphinoylpent-2-ene 2b

By the general method described above, butyllithium (1.3 mol dm^{-3} solution in hexanes; $5.7 \mathrm{~cm}^{3}, 7.4 \mathrm{mmol}$), diphenylphosphine ($1.28 \mathrm{~cm}^{3}, 6.8 \mathrm{mmol}$) and (E)-1-bromopent-2-ene $(1.0 \mathrm{~g}, 6.8 \mathrm{mmol})$ gave the allylic phosphine oxide (E)-2b (1.90 $\mathrm{g}, 103 \%$) as a white solid. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ N M R of this material indicated an $E: Z$ ratio of $85: 15$. Recrystallisation from EtOA c-hexane gave the allylic phosphine oxide (E)2b ($1.08 \mathrm{~g}, 59 \%$) as plates, $\mathrm{mp} 76-77^{\circ} \mathrm{C}$ (from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.29$ (Found: C, 75.5; H, 7.10; P, 11.5\%; M ${ }^{+}$, 271.1245. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{OP}$ requires $\mathrm{C}, 75.5 ; \mathrm{H}, 7.05 ; \mathrm{P}, 11.4 \%$; M , 271.1252); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1633$ ($\mathrm{C}=\mathrm{C}$), 1438 ($\mathrm{P}-\mathrm{Ph}$) and $1164(\mathrm{P}=0)$) $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 7.7-7.6 (4 H, m), 7.4-7.3 $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 5.32(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}}=\mathrm{CH}_{\mathrm{B}}\right), 2.98\left(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7\right.$ and $\left.^{2} \mathrm{~J}_{\mathrm{PH}} 14, \mathrm{PCH}_{2}\right), 2.18(2 \mathrm{H}, \mathrm{m})$ and 0.75 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} \mathrm{CDCl}_{3}\right) 138.8^{+}(\mathrm{d}$, $\left.\left.{ }^{3}\right]_{\mathrm{PC}} 11, \mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right), 133-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 116.9^{+}\left(\mathrm{d},{ }^{2}{ }^{\mathrm{PCC}} 9\right.$, $\left.\mathrm{C}_{\mathrm{A}} \mathrm{H}=\mathrm{C}_{\mathrm{B}} \mathrm{H}\right)$ and $34.7^{-}\left(\mathrm{d},{ }^{1}{ }^{1} \mathrm{pc} 69, \mathrm{PCH}_{2}\right), 25.6$ and $14.2^{+}(\mathrm{Me})$; $\mathrm{m} / \mathrm{z} 271.1\left(100 \%, \mathrm{M} \mathrm{H}^{+}\right)$and 201.1 (55, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$.

1-Phenyl-4-diphenylphosphinoylbut-1-ene 6

Butyllithium ($1.35 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane; $1.7 \mathrm{~cm}^{3}, 2.3$ mmol) was added to a stirred solution of methyldiphenylphosphine oxide ($500 \mathrm{mg}, 2.31 \mathrm{mmol}$) in dry THF ($60 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ and the yellow mixture was cooled to $-78^{\circ} \mathrm{C}$. Cinnamyl bromide ($455 \mathrm{mg}, 2.32 \mathrm{mmol}$) was added dropwise as a solution in THF $\left(5 \mathrm{~cm}^{3}\right)$ to the mixture which was then stirred for 3 h during which time the colour of the solution changed to black and then to yellow. The temperature of the reaction mixture was raised to $0^{\circ} \mathrm{C}$ after which it was stirred for a further 1 h . Saturated aqueous ammonium chloride ($30 \mathrm{~cm}^{3}$) was added to the mixture after which the aqueous phase was separated and extracted with dichloromethane ($3 \times 20 \mathrm{~cm}^{3}$). The combined organic extracts were washed with water ($30 \mathrm{~cm}^{3}$) and brine (30 cm^{3}), dried ($\mathrm{M} \mathrm{SSO}_{4}$) and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with EtOAc, to give the homoallylic phosphine oxide 6 ($487 \mathrm{mg}, 63 \%$) as needles, $\mathrm{mp} 120-123^{\circ} \mathrm{C}$ (from EtOAc-hexane); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.29$ (Found: $\mathrm{M}^{+}, 332.1326$. $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{OP}$ requires $\left.\mathrm{M}, 332.1330\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1652$ ($\mathrm{C}=\mathrm{C}$), $1438(\mathrm{P}-\mathrm{Ph})$ and $1178(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 7.9-$ $7.4(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph} 2 \mathrm{PO}), 7.3-7.1(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 16$, $\mathrm{PhCH}=\mathrm{CH}), 6.17(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 6$ and $16, \mathrm{PhCH}=\mathrm{CH})$ and $2.62-$ $2.38\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCH}_{2}\right.$ and $\left.\mathrm{PCH}_{2}\right) ; \delta_{\mathrm{c}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 133-125 (m, $\mathrm{Ph}_{2} \mathrm{PO}, \mathrm{Ph}$ and $\mathrm{CH}=\mathrm{CH}$), 29.6- $\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 70, \mathrm{PCH}_{2}\right.$) and $25.0^{-}\left(\mathrm{d}_{1}{ }^{2}{ }_{\mathrm{PC}} 3, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right) ; \mathrm{m} / \mathrm{z} 332.1\left(45 \%, \mathrm{M}^{+}\right)$and 202.1 (100, $\mathrm{Ph}_{2} \mathrm{POH}$).

G eneral procedure for asymmetric dihydroxylation using AD mixes

By the method of Sharpless et al. ${ }^{17}$ AD-mix (2.80 g) and methanesulfonamide ($190 \mathrm{mg}, 2.0 \mathrm{mmol}$, omitted for terminal alkenes) were stirred in 1:1 tertiary butyl alcohol-water (20 cm^{3}) at $25^{\circ} \mathrm{C}$. The mixture was cooled to $0^{\circ} \mathrm{C}$ whereupon some of the dissolved salts were precipitated. The alkene (2.0 mmol) was added immediately to the mixture. The slurry was then stirred vigorously until the reaction was complete. Sodium sulfite ($3.00 \mathrm{~g}, 23.7 \mathrm{mmol}$) was added to the mixture, the temperature of which was then allowed to warm to $20^{\circ} \mathrm{C}$ at which temperature it was stirred for a further 30 min . EtOA c $\left(50 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture, after which the aqueous fraction was separated and extracted with EtOAc ($3 \times 25 \mathrm{~cm}^{3}$). The combined organic layer and extracts were washed with aqueous potassium hydroxide ($2 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 2 \times 25 \mathrm{~cm}^{3}$, omitted
for terminal alkenes), water ($25 \mathrm{~cm}^{3}$) and brine ($25 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product.

(1R,2S)-1-(D iphenylphosphinoylmethyl)cyclohexane-1,2-diol 3h

 By the general method described above, methanesulfonamide (219 mg, 2.3 mmol), AD-mix $\alpha(3.22 \mathrm{~g})$ and 1-(diphenylphosphinoylmethyl)cyclohexene ${ }^{23} 2 \mathrm{~h}(680 \mathrm{mg}, 2.3 \mathrm{mmol}$) gave a crude product which was purified by flash chromatography, eluting with EtOAc, to yield the vicinal diol 3 h (330 mg) as needles, mp 159-161 ${ }^{\circ} \mathrm{C}$ (from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc})$ $0.36 ;[a]_{0}^{20}+3.3$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 330.1369$. $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}, 330.1384$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3384$ $(\mathrm{OH}), 1436(\mathrm{P}-\mathrm{Ph})$ and $1154(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}_{\mathrm{CDCl}}^{3}\right.$) $7.9-$ $7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.5(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.8(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.5(1$ $\mathrm{H}, \mathrm{dd}, \mathrm{J} 4$ and $10, \mathrm{CHOH}), 2.7\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}} 14\right.$ and ${ }^{2} \mathrm{~J}_{\mathrm{H}}{ }^{2} 16$, $\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.6 (dd, $\left.{ }^{2}\right)_{\mathrm{PH}} 8$ and ${ }^{2} \mathrm{~J}_{\mathrm{HH}} 16, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) and 2.0-1.0 (8 $\mathrm{H}, 4 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 139-129 (m, $\mathrm{Ph}_{2} \mathrm{PO}$), 74.5^{-} ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{pc}} 5, \mathrm{COH}$) $, 74.0^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 6, \mathrm{CHOH}\right), 40.5^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 69\right.$, PCH_{2}) 38.5^{-}($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 7$ 7 $, 29.8^{-}, 23.9^{-}$and $20.8^{-} ; \mathrm{m} / \mathrm{z} 330.1$ ($50 \%, \mathrm{M}^{+}$), $312.1\left(40, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 202.1\left(100, \mathrm{Ph}_{2} \mathrm{POH}\right)$ and 77 (20, Ph). Integration of the ${ }^{1} \mathrm{H}$ N M R spectrum of the product in the presence of Pirkle's chiral shift reagent showed an enantiomeric excess of 18%.
(2R,3S)-1-D iphenyIphosphinoylbutane-2,3-diol 3a

By the general method described above, (E)-1-diphenyl-phosphinoylbut-2-ene 2 a ($4.55 \mathrm{~g}, 17.8 \mathrm{mmol}$), methanesulfonamide ($1.69 \mathrm{~g}, 17.8 \mathrm{mmol}$) and AD-mix $\alpha(24.9 \mathrm{~g}$) gave a crude product after 7 days. Flash chromatography of this, eluting with 5\% methanol in EtOA c, gave the vicinal diol 3a (4.31 g , 84%) as a gum, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.15 ;[a]_{\mathrm{D}}^{20}-4.1$ (c 2.0 in $\mathrm{CHCl}_{3}, 10 \%$ ee) (Found: M^{+}, 290.1087. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{PO}_{3}$ requires M , 290.1072); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3370(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1176(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.7-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.7(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 3.8(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.6(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.6(1 \mathrm{H}, \mathrm{ddd}$, J 10, 15 and $20, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 2.45 (1 H , ddd, J 3, 10 and 15 , $\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) and $1.1(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 132-$ 128 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 70.8^{+}($\mathrm{d}, \mathrm{J}_{\mathrm{pc}} 8, \mathrm{CHOH}$), $70.7^{+}(\mathrm{s}, \mathrm{CHOH})$, $\left.33.1^{-}\left({ }^{1}\right)_{\text {pc }} 71, \mathrm{PCH}_{2}\right)$ and $18.9^{+}(\mathrm{s}, \mathrm{Me}) ; \mathrm{m} / \mathrm{z} 290.1\left(5 \%, \mathrm{M}^{+}\right)$, 245 (95, $\left.\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{COH}\right), 201\left(100, \mathrm{Ph}_{2} \mathrm{PO}\right)$ and $77(60, \mathrm{Ph})$.

(2R ,3S)-1-D iphenylphosphinoylheptane-2,3-diol 3c

By the general method described above, methanesulfonamide ($161 \mathrm{mg}, 1.69 \mathrm{mmol}$), (E)-1-diphenylphosphinoylhept-2-ene 2c ($504 \mathrm{mg}, 1.69 \mathrm{mmol}$) and A D -mix $\alpha(2.36 \mathrm{~g}$) gave a crude product after being stirred for 3 days. F lash chromatography of this, eluting with EtOA c-hexane (10:1), gave the vicinal diol 3c (289 $\mathrm{mg}, 51 \%, 61 \%$ based on recovered starting material) as needles, $\mathrm{mp} 110-113{ }^{\circ} \mathrm{C}$ (from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}\left(\right.$ EtOAc) 0.18 ; $[a]_{\mathrm{D}}^{20}$ -8.5 (c 0.9 in CHCl_{3}) (Found: $\mathrm{C}, 68.6 ; \mathrm{H}, 7.40 ; \mathrm{P}, 9.4 \% ; \mathrm{M} \mathrm{H}^{+}$, 333.1592. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{PO}_{3}$ requires $\mathrm{C}, 68.7 ; \mathrm{H}, 7.60 ; \mathrm{P}, 9.3 \%$; $\mathrm{M}+\mathrm{H}$, 333.1619); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3418(\mathrm{OH})$ and $3306(\mathrm{OH}), 1435$ ($\mathrm{P}-\mathrm{Ph}$) and $1152(\mathrm{P}=0) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.7-7.4(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$, $4.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.9(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.45(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHOH}), 3.0(1 \mathrm{H}$, br s, OH$), 2.65(1 \mathrm{H}$, ddd, J 10,12 and 15 , $\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.45\left(1 \mathrm{H}\right.$, ddd, J 3, 9 and 15, $\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.6-1.2 (6 $\left.\mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right)$ and $0.6(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 136-128 (m, Ph 2 PO), 74.6^{+}($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 12, \mathrm{CHOH}$), $69.5^{+}\left(\mathrm{d},{ }^{2}{ }^{2} \mathrm{pc}_{\mathrm{pc}} 5\right.$, $\mathrm{CHOH}), 33.4^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 71, \mathrm{PCH}_{2}\right), 32.9^{-}, 27.9^{-}, 14.0^{-}$and 9.3^{+} (s, M e); m/z $331.2\left(2.5 \%, \mathrm{MH}^{+}\right.$), 275 ($90, \mathrm{M}-\mathrm{BuH}$), 245 (95 , $\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{COH}$) and 201 ($100, \mathrm{Ph}_{2} \mathrm{PO}$). Integration of the 400 M Hz ${ }^{1} H N^{2} M$ spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 49% ee.

(1S,2R)-3-D iphenylphosphinoyl-1-phenylpropane-1,2-diol 3d

By the general method described above, methanesulfonamide ($56 \mathrm{mg}, 0.59 \mathrm{mmol}$), (E)-3-diphenylphosphinoyl-1-phenylprop-1-ene $\mathbf{2 d}$ ($188 \mathrm{mg}, 0.59 \mathrm{mmol}$) and AD-mix a (0.83 g) gave the crude product after being stirred for 5 days. Flash chromatography, eluting with 5% methanol in EtOA c gave the vicinal
diol 3d ($89 \mathrm{mg}, 66 \%$) as needles, $\mathrm{mp} 112-114{ }^{\circ} \mathrm{C}$ (from hexaneEtOA c); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAC}) 0.18$; $[a]_{0}^{20}-18.8$ (c. 0.7 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 334.1128 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 334.1123$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3336(\mathrm{OH}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1185(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.7-7.2$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), 4.72 (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.58(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{PhCHOH}), 4.13(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{CHOH}\right), 3.66(1 \mathrm{H}, \mathrm{br} 5, \mathrm{OH}), 2.39\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 10,{ }^{2} \mathrm{~J}_{\mathrm{PH}}\right.$ 12 and ${ }^{2}{ }_{\mathrm{HH}} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$) and $2.26\left(1 \mathrm{H}\right.$, ddd, J $2,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 8$ and $\left.{ }^{2} \mathrm{~J}_{\mathrm{HH}} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right) ; \delta_{\mathrm{C}}\left(63 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl}{ }_{3}\right) 132-126\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph), $77.8^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 14, \mathrm{CHOH}\right), 71.5^{+}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{pc}} 4, \mathrm{CHOH}\right)$ and $32.5^{-}\left(\mathrm{d}_{1}{ }^{1} \mathrm{~J}_{\mathrm{pc}} 71, \mathrm{PCH}_{2}\right) ; \mathrm{m} / \mathrm{z} 334.1\left(40 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 245.1$ (95, $\mathrm{Ph}_{2} \mathrm{POCH}_{2} \mathrm{COH}$) and 201.1 (100, $\mathrm{Ph}_{2} \mathrm{PO}$). Integration of the $400 \mathrm{MHz}^{1} \mathrm{H} N M R$ spectrum of this material in the presence of Pirkle's shift reagent showed it to have 74% ee.

(1R ,2S)-4-D iphenylphosphinoyl-1-phenylbutane-1,2-diol 7

By the general method described above, methanesulfonamide ($572 \mathrm{mg}, 6.02 \mathrm{mmol}$), (E)-4-diphenylphosphinoyl-1-phenyl-but-1-ene $6(2.00 \mathrm{~g}, 6.02 \mathrm{mmol})$ and A D-mix a (8.43 g) gave the crude product after 24 h . Flash chromatography of the crude product, eluting with 3% methanol in EtOAc, gave the vicinal diol $7(2.13 \mathrm{~g}, 97 \%)$ as needles, $m p>220^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.15$; [a] $]_{0}^{20}-4.7$ (c 1.7 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 348.1272$. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{PO}_{3}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 348.1279$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3363$ $(\mathrm{OH}), 1437(\mathrm{P}-\mathrm{Ph})$ and $1169(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.8-$ 7.1 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), 4.97 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4, \mathrm{PhCHOH}$), 4.36 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{OH}$), $3.96(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.82(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, $2.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2}\right)$ and $1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$; $\delta_{\mathrm{c}}(63 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 126-141 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), 77.5^{+}(CHOH), 75.7^{+} $(\mathrm{CHOH}), 26.4^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 72, \mathrm{PCH}_{2}\right)$ and $25.6^{-}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{pc}} 6\right.$, $\mathrm{PCH}_{2} \mathrm{CH}_{2}$); m/z $348.1\left(60 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 259.1$ ($100, \mathrm{M}-$ $\mathrm{PhCHOH})$ and 77 ($60, \mathrm{Ph}$). Comparison of ${ }^{1} \mathrm{H}$ NMR of the M osher's diesters of this compound and its racemate showed that this material had an enantiomeric excess of greater than 95\%.
(1S,2R)-1-(D iphenylphosphinoylmethyl)cyclohex ane-1,2-diol 3h By the general method described above, methanesulfonamide ($224 \mathrm{mg}, 2.36 \mathrm{mmol}$), 1-diphenylphosphinoylmethylcyclohexene ${ }^{23} 2 \mathrm{~h}$ ($700 \mathrm{mg}, 2.36 \mathrm{mmol}$) and AD-mix β gave the crude product after 3 days. Flash chromatography of the crude product, eluting with $1: 1$ acetone-light petroleum (bp $60-80^{\circ} \mathrm{C}$), gave the vicinal diol 3 h ($487 \mathrm{mg}, 62 \%, 73 \%$ based on recovered starting material) as needles, spectroscopically identical with that obtained previously, $[a]_{o}^{20}-3.2$ (c 0.9 in CHCl_{3}). Integration of the $400 \mathrm{MHz}^{1} \mathrm{H} N \mathrm{MR}$ spectrum of the silyl ether of this material in the presence of Pirkle's shift reagent showed it to have 14% ee.

Attempted asymmetric dihydroxylation of $\mathbf{2 i}$

By the general method described above, 3-diphenylphos-phinoylprop-1-ene ${ }^{22} \mathbf{2 i}$ and AD-mix $\alpha(1.15 \mathrm{~g})$ gave a crude product after 3 days at $0^{\circ} \mathrm{C}$ and 3 days at $20^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ N M R spectrum of the crude reaction product revealed that the reaction was 53% complete; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.9-7.3$ ($10 \mathrm{H}, \mathrm{m}$,
 $\left.\mathrm{CH}=\mathrm{CH}_{2}{ }^{\mathrm{sm}}\right), 4.64\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}^{\text {diol }}\right), 4.12\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{OH}^{\text {diol }}\right)$, $3.68\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4\right.$ and $\left.16, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}^{\text {diol }}\right), 3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4$ and $\left.16, \mathrm{CH}_{\mathrm{A}} \mathrm{CH}_{\mathrm{B}} \mathrm{OH}^{\text {diol }}\right)$, $3.18\left(2 \mathrm{H}\right.$, tdd, J 1,8 and $16, \mathrm{PCH}_{2}{ }^{\mathrm{SM}}$), 2.67 (1 H , ddd, J 9,12 and $16, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}{ }^{\text {diol }}$) and $2.43(1 \mathrm{H}$, ddd, J 4,9 and $16, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$ diol).

M odified procedure for the asymmetric dihydroxylation of allylic phosphine oxides

Osmium chloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$), potassium ferricyanide ($987 \mathrm{mg}, 3.0 \mathrm{mmol}$), potassium carbonate ($300 \mathrm{mg}, 3.00 \mathrm{mmol}$), ligand ($0.02-0.25 \mathrm{mmol}, 2-25 \mathrm{~mol} \%$) and the allylic phosphine oxide (1.00 mmol) were dissolved in $1: 1$ tertiary butyl alcoholwater ($10 \mathrm{~cm}^{3}$). The reaction mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 7 days after which sodium sulfite ($1.5 \mathrm{~g}, 16.0 \mathrm{mmol}$) was added
to it and stirring continued for a further 30 min . The aqueous fraction was separated and extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$), and the combined organic layer and extracts were washed with aqueous potassium hydroxide ($2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; $2 \times 15 \mathrm{~cm}^{3}$), water ($15 \mathrm{~cm}^{3}$) and brine ($15 \mathrm{~cm}^{3}$), dried ($\mathrm{M} \mathrm{gSO}_{4}$) and evaporated under reduced pressure to give a crude product.

A symmetric dihydrox ylation of 2d using $2.5 \mathrm{~mol} \% \mathrm{DH} Q \mathrm{D}_{2}{ }^{-}$ PHAL

By the general method described above, (E)-3-diphenyl-phosphinoyl-1-phenylprop-1-ene 2d ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$), potassium carbonate ($131 \mathrm{mg}, 0.94 \mathrm{mmol}$), potassium ferricyanide ($628 \mathrm{mg}, 1.90 \mathrm{mmol}$), methanesulfonamide (29 mg , 0.30 mmol), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DHQD ${ }_{2}$-PHAL ($12.3 \mathrm{mg}, 0.015 \mathrm{mmol}, 2.5 \mathrm{~mol} \%$) gave a crude product after 3 days which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to give the vicinal diol 3 d ($159 \mathrm{mg}, 72 \%$) as needles, spectroscopically identical with that obtained previously, $[a]_{\mathrm{D}}^{20}+14.6$ ($\mathrm{c} 0.99 \mathrm{in} \mathrm{CHCl}_{3}$). Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ NMR spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 84\% ee.

A symmetric dihydrox ylation of 2d using $5.0 \mathrm{~mol} \% \mathrm{DH} Q \mathrm{D}_{2}{ }^{-}$ PHAL

By the general method described above, (E)-3-diphenyl-phosphinoyl-1-phenylprop-1-ene $2 \mathbf{d}(5.57 \mathrm{~g}, 17.5 \mathrm{mmol})$, A D mix β (24.5 g), methanesulfonamide ($1.67 \mathrm{~g}, 17.5 \mathrm{mmol}$), osmium trichloride ($110 \mathrm{mg}, 0.37 \mathrm{mmol}$) and $\mathrm{DHQD}_{2}-\mathrm{PHAL}$ ($545 \mathrm{mg}, 0.70 \mathrm{mmol}, 4.0 \mathrm{~mol} \%$) gave a crude product after being stirred for 3 days with a mechanical stirrer. Flash chromatography of the crude product, eluting with 5% methanol in EtOA c , gave the vicinal diol $3 \mathrm{~d}\left(3.02 \mathrm{~g}, 49 \%\right.$), $[a]_{\mathrm{D}}^{20}+11.4$ (c 0.89 in CHCl_{3}). Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{MR}$ spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 85% ee Recrystallisation from EtOA c-hexane gave the product 3 d ($1.55 \mathrm{~g}, 25 \%$) as needles, spectroscopically identical with that obtained previously, $[a]_{0}^{20}$ +15.7 (c 0.54 in CHCl_{3}). Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} \mathrm{N} \mathrm{M} \mathrm{R}$ spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 78% ee.

A symmetric dihydroxylation of 2d using $7.5 \mathrm{~mol} \% \mathrm{DHQ} \mathrm{D} \mathbf{2}^{-}$ PHAL

By the general method described above, (E)-3-diphenyl-phosphinoyl-1-phenylprop-1-ene 3d ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$), potassium carbonate ($131 \mathrm{mg}, 0.94 \mathrm{mmol}$), potassium ferricyanide ($628 \mathrm{mg}, 1.90 \mathrm{mmol}$), methanesulfonamide (29 mg , 0.30 mmol), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DH QD ${ }_{2}$-PHAL ($36.8 \mathrm{mg}, 0.045 \mathrm{mmol}, 7.5 \mathrm{~mol} \%$) gave a crude product after 3 days which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to give the vicinal diol 3d ($199 \mathrm{mg}, 94 \%$) as needles, $[a]_{\mathrm{o}}^{20}+13.5$ (c 0.99 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{M}$ R spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 85% ee.

A symmetric dihydroxylation of 2d using 15.0 mol\% D H Q D CLB

By the general method described above, (E)-3-diphenyl-phosphinoyl-1-phenylprop-1-ene 2d ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$), potassium carbonate ($261 \mathrm{mg}, 1.89 \mathrm{mmol}$), potassium ferricyanide ($624 \mathrm{mg}, 1.90 \mathrm{mmol}$), methanesulfonamide (59 mg , 0.60 mmol), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DH QD -CLB ($38 \mathrm{mg}, 0.09 \mathrm{mmol}, 15 \mathrm{~mol} \%$) gave a crude product after 2 days which was purified by flash chromatography, eluting with 2\% methanol in EtOA c, to give the vicinal diol 3d ($174 \mathrm{mg}, 79 \%$) as needles, spectroscopically identical with that obtained previously, $[a]_{0}^{20}+12.2$ (c 0.40 in CHCl_{3}). Integration
of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{~N}$ R spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 86% ee

A symmetric dihydroxylation of 2d using $\mathbf{2 5 . 0}$ mol\% D H Q D. PHN

By the general method described above, (E)-3-diphenyl-phosphinoyl-1-phenylprop-1-ene 2d ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$), potassium carbonate ($261 \mathrm{mg}, 1.89 \mathrm{mmol}$), potassium ferricyanide ($624 \mathrm{mg}, 1.90 \mathrm{mmol}$), methanesulfonamide (59 mg , 0.60 mmol), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DH QD-PH N ($79 \mathrm{mg}, 0.16 \mathrm{mmol}, 25 \mathrm{~mol} \%$) gave a crude product after 2 days which was purified by flash chromatography, eluting with 2% methanol in EtOAc, to give the vicinal diol 3d ($149 \mathrm{mg}, 79 \%$) as needles, $[a]_{0}^{20}+10.4$ (c. 0.50 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N M \mathrm{R}$ spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 88\% ee.

A symmetric dihydroxylation of 2a using 15.0 mol\% DH Q DCLB

By the general method described above, (E)-1-diphenyl-phosphinoylbut-2-ene 2a ($1.59 \mathrm{~g}, 5.9 \mathrm{mmol}$), potassium carbonate ($2.4 \mathrm{~g}, 17.3 \mathrm{mmol}$), potassium ferricyanide ($5.7 \mathrm{~g}, 17.3$ mmol), methanesulfonamide ($550 \mathrm{mg}, 5.8 \mathrm{mmol}$), osmium trichloride ($30 \mathrm{mg}, 0.10 \mathrm{mmol}$) and DHQD-CLB ($352 \mathrm{mg}, 0.88$ $\mathrm{mmol}, 15.0 \mathrm{~mol} \%$) gave a crude product after 2 days which was purified by flash chromatography, eluting with 8% methanol in EtOA c, to give the vicinal diol 3 a ($1.60 \mathrm{mg}, 94 \%$) as an oil, $[a]_{0}^{20}$ -3.1 (c 1.62 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ NMR spectrum of the M osher's ester of a derivative $\mathbf{1 3}(R=M e)$ of this material showed it to have 46% ee.

(2R,3S)-1-D iphenyIphosphinoyIpentane-2,3-diol syn-3b

By the general method described above, 1 -diphenyl-phosphinoylpent-2-ene 2b ($700 \mathrm{mg}, 2.59 \mathrm{mmol}, 92: 8 \mathrm{E}: \mathrm{Z}$ mixture), potassium carbonate ($1.06 \mathrm{~g}, 7.7 \mathrm{mmol}$), potassium ferricyanide ($2.5 \mathrm{~g}, 7.6 \mathrm{mmol}$), methanesulfonamide (245 mg , 2.6 mmol), osmium trichloride ($11 \mathrm{mg}, 36 \mu \mathrm{~mol}$) and D HQD CLB ($154 \mathrm{mg}, 0.38 \mathrm{mmol}, 15.0 \mathrm{~mol} \%$) gave a crude product after being stirred for 1 day. Flash chromatography of the crude product, eluting with 8% methanol in EtOA c, gave the vicinal diol syn-3b ($816 \mathrm{mg}, 103 \%, 92: 8 \mathrm{syn}: \mathrm{anti}$) as an oil, $\mathrm{R}_{\mathrm{f}}(8 \%$ methanol in EtOAc) 0.23; $[a]_{\mathrm{D}}^{20}-0.3$ (c 0.78 in CHCl_{3}) (Found: M^{+}, 304.1233. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{PO}_{3}$ requires $\mathrm{M}, 304.1228$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 3359(\mathrm{OH}) 1438(\mathrm{P}-\mathrm{Ph})$ and $1172(\mathrm{P}=0)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 7.8-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $4.51(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.98$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.99(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.70$ (1 H, ddd, J 8,10 and $12, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.42(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3,9$ and $\left.15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.52(2 \mathrm{H}, \mathrm{m})$ and $0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}) ; \delta_{\mathrm{C}}(100$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $\left.134-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 76.1^{+}\left(\mathrm{d},{ }^{3}\right)_{\mathrm{pc}} 12, \mathrm{CHOH}\right)$, $69.1^{+}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{PC}} 5, \mathrm{CHOH}\right), 33.5^{-}\left(\mathrm{d},{ }^{1}{ }_{\mathrm{Pc}} 71, \mathrm{PCH}_{2}\right), 26.2^{-}$and 10.1+ (Me); m/z 304.1 ($1 \%, \mathrm{M}^{+}$), 245.1 ($80, \mathrm{M}^{+}-\mathrm{CHOHEt}$), 202.1 ($\mathrm{Ph} h_{2} \mathrm{POH}$) and 201.0 ($100, \mathrm{Ph}_{2} \mathrm{PO}$). Integration of the 500 M Hz ${ }^{1} \mathrm{H} N M R$ spectrum of the M osher's ester of a derivative ${ }^{6}$ $13(R=E t)$ of this material showed it to have 76% ee.

A symmetric dihydroxylation of 2c using 2.0 mol\% D H Q D-C L B

 By the general method described above, (E)-1-diphenyl-phosphinoylhept-2-ene 2c ($200 \mathrm{mg}, 0.67 \mathrm{mmol}$), potassium carbonate ($139 \mathrm{mg}, 1.00 \mathrm{mmol}$), potassium ferricyanide (668 mg , 2.03 mmol), methanesulfonamide ($31 \mathrm{mg}, 0.32 \mathrm{mmol}$), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DHQD-CLB $(6.4 \mathrm{mg}, 13$ $\mu \mathrm{mol}, 2.0 \mathrm{~mol} \%$) gave a crude product after 3 days which was purified by flash chromatography, eluting with EtOAc, to give the vicinal diol 3 c ($142 \mathrm{mg}, 64 \%$) as needles, $[a]_{0}^{20}+3.1$ (c 0.50 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{M}$ R spectrum of thedisilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 58% ee.

A symmetric dihydrox ylation of 2c using 15.0 mol\% D H Q D CLB

By the general method described above, (E)-1-diphenyl-phosphinoylhept-2-ene 2c ($200 \mathrm{mg}, 0.67 \mathrm{mmol}$), potassium carbonate ($139 \mathrm{mg}, 1.00 \mathrm{mmol}$), potassium ferricyanide (668 $\mathrm{mg}, 2.03 \mathrm{mmol}$), methanesulfonamide ($31 \mathrm{mg}, 0.32 \mathrm{mmol}$), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DHQD-CLB (48 $\mathrm{mg}, 100 \mu \mathrm{~mol}, 15 \mathrm{~mol} \%$) gave a crude product after 3 days which was purified by flash chromatography, eluting with 3% methanol in EtOA c, to give the vicinal diol $\mathbf{3 c}$ ($127 \mathrm{mg}, 57 \%$) as needles, $[a]_{0}^{20}+7.0$ (c 0.40 in $\mathrm{CHCl}_{3}, 76 \%$ ee), spectroscopically identical with that obtained previously. Integration of the 400 $M H z^{1} H N M R$ spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 76% ee. This reaction was also performed on a 6.5 g scale in 90% yield.

A symmetric dihydrox ylation of 2c using $\mathbf{2 5 . 0}$ mol\% D H Q D PHN

By the general method described above, (E)-1-diphenyl-phosphinoylhept-2-ene 2c ($200 \mathrm{mg}, 0.67 \mathrm{mmol}$), potassium carbonate ($277 \mathrm{mg}, 2.00 \mathrm{mmol}$), potassium ferricyanide (668 $\mathrm{mg}, 2.03 \mathrm{mmol}$), methanesulfonamide ($64 \mathrm{mg}, 0.67 \mathrm{mmol}$), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DHQD-PHN (85 $\mathrm{mg}, 0.17 \mathrm{mmol}, 25 \mathrm{~mol} \%$) gave a crude product after 1 day which was purified by flash chromatography, eluting with 3% methanol in EtOA c, to give the vicinal diol $\mathbf{3 c}$ ($155 \mathrm{mg}, 70 \%$) as needles, $[a]_{0}^{20}+8.0$ (c. 0.40 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ NM R spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 75% ee

A symmetric dihydroxylation of 2h using 13.0 mol\% DH Q D. CLB

By the general method described above, 1-(diphenylphosphinoylmethyl)cyclohexene ${ }^{23} 2 \mathrm{~h}$ ($200 \mathrm{mg}, 0.68 \mathrm{mmol}$), potassium carbonate ($281 \mathrm{mg}, 2.00 \mathrm{mmol}$), potassium ferricyanide ($671 \mathrm{mg}, 2.03 \mathrm{mmol}$), methanesulfonamide (63 mg , 0.67 mmol), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DH QD -CLB ($41 \mathrm{mg}, 88 \mu \mathrm{~mol}, 13 \mathrm{~mol} \%$) gave a crude product after 1 day which was purified by flash chromatography, eluting with EtOAc, to give the vicinal diol 3 h ($138 \mathrm{mg}, 62 \%$) as needles, $[a]_{0}^{]_{0}^{0}}-2.0$ (c 1.40 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ NMR spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 60% ee

A symmetric dihydroxylation of $\mathbf{2 h}$ using $\mathbf{2 5 . 0}$ mol\% DH Q D. PHN

By the general method described above, 1-(diphenylphosphinoylmethyl) cyclohexene ${ }^{23} 2 \mathrm{~h}(200 \mathrm{mg}, 0.68 \mathrm{mmol})$, potassium carbonate ($281 \mathrm{mg}, 2.00 \mathrm{mmol}$), potassium ferricyanide ($671 \mathrm{mg}, 2.03 \mathrm{mmol}$), methanesulfonamide (63 mg , 0.67 mmol), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DH QD -PHN ($85 \mathrm{mg}, 170 \mu \mathrm{~mol}, 25 \mathrm{~mol} \%$) gave a crude product after 1 day which was purified by flash chromatography, eluting with 1% methanol in EtOA c, to give the vicinal diol 3 h (138 mg , 62%) as needles, $[a]_{0}^{20}-1.5$ (c 1.40 in CHCl_{3}), spectroscopically identical with that obtained previously. Integration of the 400 $M H z^{1} H N M R$ spectrum of the disilyl ether of this material in the presence of Pirkle's shift reagent showed it to have 38% ee.
(2S,3R)-1-D iphenylphosphinoyl-3-phenylbutane-2,3-diol 3e By the general method described above, (E)-1-diphenyl-phosphinoyl-3-phenylbut-2-ene $2 \mathrm{e}(80 \mathrm{mg}, 0.24 \mathrm{mmol})$, potassium carbonate ($130 \mathrm{mg}, 0.94 \mathrm{mmol}$), potassium ferricyanide ($245 \mathrm{mg}, 0.74 \mathrm{mmol}$), methanesulfonamide ($23 \mathrm{mg}, 0.24 \mathrm{mmol}$), osmium trichloride ($3 \mathrm{mg}, 0.01 \mathrm{mmol}$) and DHQD-CLB (11.5 $\mathrm{mg}, 25 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%$) gave a crude product after 1 day which
was purified by flash chromatography, eluting with 2% methanol in EtOAc, to give the vicinal diol $3 \mathrm{e}(56 \mathrm{mg}, 64 \%$) as an oil, $\mathrm{R}_{\mathrm{f}}\left(\mathrm{EtOAc}\right.$) 0.15 ; $[a]_{0}^{20}+5.7$ (c. 0.21 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 348.1278 . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{PO}_{3}$ requires $\mathrm{M}-\mathrm{H}_{2} \mathrm{O}, 348.1279$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3344(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1160(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.8-7.2\left(15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 4.66$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2, \mathrm{CHOH}$), $4.23(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.43(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 2.39\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH} \mathrm{r}_{2}\right)$ and $1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}) ; \delta_{\mathrm{c}}(63 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 144.5^{-}(ipso-Ph), $134-126\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 76.2^{-}$(d , ${ }^{3} \mathrm{P}_{\mathrm{PC}} 13, \mathrm{CM} \mathrm{COH}$) $73.7^{+}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{Pc}} 5, \mathrm{CHOH}\right), 31.9^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{PC}} 72\right.$, PCH_{2}) and $21.0^{+}(\mathrm{s}, \mathrm{Me}) ; \mathrm{m} / \mathrm{z} 348.1\left(60 \%, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 245.1$ [100, $\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH} \mathrm{O}$], 201.0 ($95, \mathrm{Ph}_{2} \mathrm{PO}$) and 77 (55, Ph). Integration of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ NM R spectrum of this material in the presence of Pirkle's shift reagent showed it to have 42% ee.

(2S,3R)-1-D iphenylphosphinoyl-2-methylheptane-2,3-diol 3f

By method F2, (E)-1-diphenylphosphinoyl-2-methylhept-2-ene $2 f(1.0 \mathrm{~g}, 3.2 \mathrm{mmol})$, potassium ferricyanide ($3.1 \mathrm{~g}, 9.4 \mathrm{mmol}$), potassium carbonate ($1.3 \mathrm{~g}, 9.4 \mathrm{mmol}$), DHQD-CLB (188 mg , 0.48 mmol), methanesulfonamide ($301 \mathrm{mg}, 3.2 \mathrm{mmol}$) and osmium trichloride ($15 \mathrm{mg}, 51 \mu \mathrm{~mol}$) gave a crude product, which was purified by flash chromatography, eluting with 2% methanol in EtOA c , to give the vicinal diol $\mathbf{3 f}(1.18 \mathrm{~g}, 106 \%)$ as an oil, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOA} \mathrm{c}) 0.30 ;[a]_{\mathrm{D}}^{20}-6.3$ (c 0.63 in CHCl_{3}) (Found: MH^{+}, 347.1776. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{PO}_{3}$ requires $\mathrm{M} \mathrm{H}^{+}$, 347.1776); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3359(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1174(\mathrm{P}=0)$; $\delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 7.8-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 4.83 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $3.52\left(1 \mathrm{H}, \mathrm{br}\right.$ s, OH), $3.50(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CHOH}), 2.63\left(2 \mathrm{H}, \mathrm{d}^{2}{ }^{2}\right)_{\mathrm{PH}}$ $\left.11, \mathrm{PCH}_{2}\right), 1.5-1.15(6 \mathrm{H}, \mathrm{m}), 1.15(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$ and $0.82(3 \mathrm{H}, \mathrm{t}$, J 7, Me); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134$-128 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 77.2^{+} (CHOH), $75.5^{-}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{Pc}} 5, \mathrm{CM} \mathrm{COH}\right), 38.1^{-}\left(\mathrm{d},{ }^{1}{ }_{\mathrm{pc}} 69, \mathrm{PCH}_{2}\right)$, $30.6^{-}, 29.1^{-}, 24.4^{+}\left(\mathrm{d},{ }^{3}{ }^{\text {I }}\right.$ pc $7, \mathrm{Me}$), 22.2^{-}and $14.0^{+}(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z}$ $347.2\left(4 \%, \mathrm{M} \mathrm{H}^{+}\right), 259.1$ ($100, \mathrm{M}-\mathrm{CHOHBu}$) and 201.0 (95, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right)$. Integration of the $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} \mathrm{NMR}$ spectrum of the M osher's ester of a derivative $21\left(R^{1}=B u, R^{2}=M e\right)$ of this material showed it to have 74% ee.

(1R ,2S)-1-C yclohexyl-3-diphenylphosphinoyl-2-methylpropane-1,2-diol 3g

By method F2, (E)-1-cyclohexyl-3-diphenylphosphinoyl-2-methylprop-1-ene $\mathbf{2 g}$ ($2.01 \mathrm{~g}, 5.9 \mathrm{mmol}$), potassium ferricyanide $(5.8 \mathrm{~g}, 17.6 \mathrm{mmol})$, potassium carbonate ($2.4 \mathrm{~g}, 17.4 \mathrm{mmol}$), DHQD-CLB ($350 \mathrm{mg}, 0.89 \mathrm{mmol}$), methanesulfonamide (560 $\mathrm{mg}, 5.8 \mathrm{mmol}$) and osmium trichloride ($35 \mathrm{mg}, 105 \mathrm{mmol}$) gave a crude product, which was purified by flash chromatography, eluting with 3\% methanol in EtOAc, to give the vicinal diol 3 g ($2.12 \mathrm{~g}, 96 \%$) as an oil, $\mathrm{R}_{\mathrm{f}}\left(5 \%\right.$ methanol in EtOA c) $0.58 ;[a]_{\mathrm{D}}^{20}$ +1.1 (c 1.41 in CHCl_{3}) (Found: $\mathrm{M} \mathrm{H}^{+}$, 373.1932. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{PO}_{3}$ requires $\mathrm{MH}, 373.1932$); $v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3348(\mathrm{OH}), 1438$ (P-Ph) and $1174(\mathrm{P}=0) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 7.8-7.4(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 4.4-4.2(3 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and CHOH$), 2.71\left(1 \mathrm{H}, \mathrm{dd},{ }^{2}\right)_{\mathrm{PH}} 1$ and J $\left.1, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.61\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}} 9\right.$ and J $\left.15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, 1.9-1.0 ($10 \mathrm{H}, \mathrm{m}$) and $1.29(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e}) ; \delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 134-128 ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$) , 79.8 ${ }^{+}\left(\mathrm{d},{ }^{3} \mathrm{~J} \mathrm{pc} 5\right.$), $75.6^{-}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{pc}} 5\right.$, CM eOH), 41.0 ${ }^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{Pc}} 69, \mathrm{PCH}_{2}\right), 37.3^{+}, 31.6^{-}, 26.9^{-}, 26.5^{+}$ and 26.4^{+}(Me e) (some peaks coincident); $\mathrm{m} / \mathrm{z} 373.2$ (10%, MH^{+}), 289.1 ($80, \mathrm{M}^{+}$- c-Hex), 259.1 ($100, \mathrm{M}^{+}-\mathrm{c}-\mathrm{Hex}-$ CHOH) and $202.1\left(80, \mathrm{Ph}_{2} \mathrm{POH}\right)$. Integration of the 500 M Hz ${ }^{1} H$ NMR spectrum of the M osher's ester of a derivative 21 ($R^{1}=c-H e x, R^{2}=M e$) of this material showed it to have 84% ee.
(2R,3R)-1-D iphenylphosphinoylpentane-2,3-diol anti-3b By the general method described above, (Z)-1-diphenyl-phosphinoylpent-2-ene 2b ($86: 14 \mathrm{Z}:$ E mixture; $200 \mathrm{mg}, 0.74$ mmol), potassium carbonate ($304 \mathrm{mg}, 2.2 \mathrm{mmol}$), potassium ferricyanide ($727 \mathrm{mg}, 2.2 \mathrm{mmol}$), methanesulfonamide (70 mg , 0.66 mmol), osmium trichloride ($3 \mathrm{mg}, 10 \mu \mathrm{~mol}$) and DHQDCL B ($44 \mathrm{mg}, 0.11 \mathrm{mmol}, 15.0 \mathrm{~mol} \%$) gave a crude product after
being stirred for 1 day. Flash chromatography of the crude product, eluting with 8% methanol in EtOAC, gave the vicinal diol anti-3b (86:14 anti :syn; $816 \mathrm{mg}, 103 \%$) as an oil, $\mathrm{R}_{\mathrm{f}}(8 \%$ methanol in EtOA c) 0.23 ; $[a]_{0}^{20}-3.1$ (c 2.54 in CHCl_{3}) (Found: M^{+}, 304.1211. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{PO}_{3}$ requires $\mathrm{M}, 304.1228$); $v_{\text {max }} / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 3376(\mathrm{OH}), 1438(\mathrm{P}-\mathrm{Ph})$ and $1175(\mathrm{P}=0) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 7.8-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $4.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.96$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.61(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.73(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.59$ ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 7,9$ and $12, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.41(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2,8$ and $\left.15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.42(2 \mathrm{H}, \mathrm{m})$ and $0.91(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}) ; \delta_{\mathrm{C}}(100$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 133 -128 (m, $\mathrm{Ph}_{2} \mathrm{PO}$), $75.6^{+}\left(\mathrm{d},{ }^{3}\right)_{\mathrm{pc}} 12, \mathrm{CHOH}$),
 10.2^{+}(M e); m/z 304.1 ($1 \%, \mathrm{M}^{+}$), 245.1 ($100, \mathrm{M}^{+}$- CHOHEt) and 77.0 (25, Ph). Integration of the $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{M}$ R spectrum of the M osher's ester of a derivative $13(R=E t)$ of this material showed it to have 22% ee.

L arge scale synthesis of diol 3d

Potassium ferricyanide ($94.6 \mathrm{~g}, 287 \mathrm{mmol}$), potassium carbonate ($19.3 \mathrm{mg}, 137 \mathrm{mmol}$), methanesulfonamide ($9.0 \mathrm{~g}, 94 \mathrm{mmol}$), DH QD-CLB ($3.25 \mathrm{~g}, 7.5 \mathrm{~mol} \%$) and allylic phosphine oxide 2d ($30.5 \mathrm{~g}, 96 \mathrm{mmol}$) were dissolved in 1:1 tertiary butyl alcoholwater ($120 \mathrm{~cm}^{3}$) and the mixture stirred at $25^{\circ} \mathrm{C}$ for 10 min . Osmium trichloride ($444 \mathrm{mg}, 1.5 \mathrm{mmol}$) was then added to the reaction mixture after which it was stirred for 5 days. Sodium sulfite ($63 \mathrm{~g}, 500 \mathrm{mmol}$) was then added to the reaction mixture and the slurry stirred for 30 min . The layers were separated and the aqueous fraction was extracted with dichloromethane $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined organic layer and extracts were washed with aqueous potassium hydroxide ($2.0 \mathrm{~mol} \mathrm{dm}{ }^{-3}$; $2 \times 100 \mathrm{~cm}^{3}$), water ($200 \mathrm{~cm}^{3}$) and brine ($200 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{SOO}_{4}\right)$ and evaporated under reduced pressure to give a crude product. Recystallisation of this from EtOA c-hexane and flash chromatography of the mother liquors, eluting with 4\% methanol in EtOA c, gave the vicinal diol 3d (30.4 g, 90\%) as needles, spectroscopically identical with that obtained previously.

(1R S,2SR)-4-D iphenylphosphinoyl-1-phenylbutane-1,2-diol 7

By the general method described above, osmium(III) chloride (3 $\mathrm{mg}, 0.01 \mathrm{mmol}$), methanesulfonamide ($40 \mathrm{mg}, 0.35 \mathrm{mmol}$), potassium ferricyanide ($337 \mathrm{mg}, 1.04 \mathrm{mmol}$), potassium carbonate ($142 \mathrm{mg}, 1.04 \mathrm{mmol}$), quinuclidine ($3 \mathrm{mg}, 25 \mu \mathrm{~mol}, 7.5$ $\mathrm{mol} \%$) and homoallylic phosphine oxide 6 ($117 \mathrm{mg}, 0.35 \mathrm{mmol}$) gave a crude product which was purified by flash chromatography, eluting with 5% methanol in EtOAc to give the diol 7, $\mathrm{mp}>220^{\circ} \mathrm{C}$ (from EtOA c-hexane), spectroscopically identical with that obtained previously.

G eneral procedure for the silylation of diols with chlorotrimethylsilane and triethylamine

Triethylamine ($0.25 \mathrm{~cm}^{3}, 1.82 \mathrm{mmol}$) and chlorotrimethylsilane $\left(0.15 \mathrm{~cm}^{3}, 1.32 \mathrm{mmol}\right)$ were added dropwiseto a stirred solution of the diol $(0.44 \mathrm{mmol})$ in dry THF $\left(5 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$. The reaction mixture was stirred for 1 h under argon after which saturated aqueous ammonium chloride ($10 \mathrm{~cm}^{3}$) was added to it. The aqueous layer was separated and extracted with dichloromethane ($3 \times 10 \mathrm{~cm}^{3}$) and the combined organic layer and extracts were washed with brine ($10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product.

(2R,3S)-1-D iphenylphosphinoyl-2,3-bis(trimethylsilyloxy)butane

 8aBy the general method described above, ($2 \mathrm{R}, 3 \mathrm{~S}$)-1-di-phenylphosphinoylbutane-2,3-diol 3a ($156 \mathrm{mg}, 0.53 \mathrm{mmol}$) gave a crude product. Flash chromatography of this, eluting with $2: 1$ EtOA c-hexane, gave the disilyl ether $8 \mathrm{a}(147 \mathrm{mg}, 63 \%$) as needles, $m p-85-87^{\circ} \mathrm{C}$ (from hexane-EtOAc); $R_{f}(E t O A c)$ $0.61 ;[a]_{0}^{20}-3.7$ (c. 1.0 in CHCl_{3}) (Found: M^{+}, 434.1861. $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{PO}_{3} \mathrm{Si}_{2}$ requires $\left.\mathrm{M}, 434.1870\right)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1437$
($\mathrm{P}-\mathrm{Ph}$) and $1179(\mathrm{P}=\mathrm{O})$) $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right)$ 7.7-7.3 ($10 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$), 4.2 (1 H , dddd, J 3, 5,8 and ${ }^{3} \mathrm{~J}_{\mathrm{PH}} 12, \mathrm{PCH}_{2} \mathrm{CH}$), 3.8 (1 $\mathrm{H}, \mathrm{ddq}, \mathrm{J}_{\mathrm{PH}} 2$, J 5 and J $6, \mathrm{MeCHOSiM} \mathrm{e}_{3}$), 2.65 (1 H , ddd, J 3, ${ }^{2} \int_{\text {PH }} 13$ and ${ }^{2} \mathrm{~J}_{\mathrm{HH}} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.4\left(1 \mathrm{H}\right.$, ddd, J $8,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 9$ and $\left.{ }^{2} \mathrm{~J}_{\text {HH }} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.1(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{Me}), 0.1\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right)$ and $\left.-0.1\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}(63 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl})_{3}\right) 135-128\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, 70.3-70.1 ($\mathrm{m}, 2 \times \mathrm{COSiM}_{3}$), $30.3^{-}\left(\mathrm{d},{ }^{1}{ }_{\text {pc }} 73, \mathrm{PCH}_{2}\right), 16.5^{+}$ (M e), 0.2^{+}($\mathrm{SiM} \mathrm{e}_{3}$) and $0.1^{+}\left(\mathrm{SiM} \mathrm{e}_{3}\right) ; \mathrm{m} / \mathrm{z} 434\left(15 \%, \mathrm{M}^{+}\right), 317.1$ ($100, \mathrm{M}-\mathrm{MeCHOSiM}_{3}$) and 73.0 ($95, \mathrm{OSiM}_{3}$). Integration of the $400 \mathrm{MHz}^{1} \mathrm{H} N M R$ spectrum of this material in the presence of Pirkle's shift reagent showed it to have 18% ee.

(2R ,3S)-1-D iphenyIphosphinoyl-2,3-bis(trimethylsilyloxy)heptane 8 b

By the general method described above, (2R,3S)-1-di-phenylphosphinoylheptane-2,3-diol 3c ($133 \mathrm{mg}, 0.40 \mathrm{mmol}$) gave a crude product. F lash chromatography of this, eluting with EtOA c, gave the disilyl ether $\mathbf{8 b}$ ($178 \mathrm{mg}, 95 \%$) as plates, $\mathrm{mp} 89-92{ }^{\circ} \mathrm{C}$ (from EtOA c-hexane); R_{f} (EtOAc) 0.62 ; $[a]_{\mathrm{D}}^{20}$ -10.9 (c 1.2 in CHCl_{3}) (Found: $\mathrm{C}, 65.4 ; \mathrm{H}, 7.25 ; \mathrm{P}, 6.3 \% ; \mathrm{M} \mathrm{H}^{+}$, 477.2444. $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{PSi}_{2}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 7.50 ; \mathrm{P}, 6.2 \%$; M H , 477.2410); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1441(\mathrm{P}-\mathrm{Ph})$ and $1193(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 8.0-7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.20(1 \mathrm{H}$, dddd, J 2, 4, 10 and $^{3}{ }^{3}$ PH 10, PCH $_{2} \mathrm{CH}$), 3.61 (1 H , ddd, J 2,4 and $10, \mathrm{BuCH} O \mathrm{Si}), 2.62\left(1 \mathrm{H}\right.$, ddd, J $2,{ }^{2} \mathrm{~J}_{\text {рн }} 15$ and ${ }^{2} \mathrm{~J}_{\text {н }} 16$, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.44\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 8,{ }^{2} \mathrm{~J}_{\mathrm{PH}} 10\right.$ and ${ }^{2} \mathrm{~J}_{\mathrm{HH}} 16, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.5-1.1 ($6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}$), $0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}), 0.09(9 \mathrm{H}, \mathrm{s}$, $\mathrm{SiM} \mathrm{e}_{3}$) and $-0.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 130-127$ ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 74.7^{+}($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 11, \mathrm{PCH}_{2} \mathrm{CH}$), $69.8^{+}\left(\mathrm{d},{ }^{3} \mathrm{Jp} 5\right.$, BuCH OSiM e ${ }_{3}$), 30.9 ${ }^{-}, 29.0^{-}\left(\mathrm{d},{ }^{1}{ }^{\text {pc }}\right.$ 68, PCH_{2}), 30.1- 22.8^{-}, $14.1^{+}, 0.4^{+}\left(\mathrm{SiM} \mathrm{e}_{3}\right)$ and $0.3^{+}\left(\mathrm{SiM} \mathrm{e}_{3}\right) ; \mathrm{m} / \mathrm{z} 477.2\left(15 \%, \mathrm{M} \mathrm{H}^{+}\right)$, 318.1 ($100, \mathrm{M} \mathrm{H}-\mathrm{BuCHOSiM} \mathrm{e}_{3}$), 274.1 ($80, \mathrm{Ph}_{2} \mathrm{POSiM}_{3}$) and 202 ($85, \mathrm{Ph}_{2} \mathrm{POH}$). A nalysis of the $400 \mathrm{MHz}^{1} \mathrm{H} N \mathrm{NR}$ spectrum of this material in the presence of Pirkle's chiral shift reagent indicated that it had 49% ee.

(1S,2R)-1-P henyl-3-diphenylphosphinoyl-1,2-bis(trimethylsilyloxy)propane 8 C

By the general method described above, (1S,2R)-1-phenyl-3-diphenylphosphinoylpropane-1,2-diol 3d ($74 \mathrm{mg}, 0.21 \mathrm{mmol}$) gave a crude product. Flash chromatography of this, eluting with 2:1 EtOA c-light petroleum (bp $40-60^{\circ} \mathrm{C}$), gave the disilyl ether $8 \mathrm{c}\left(76 \mathrm{mg}, 73 \%\right.$) as needles, $\mathrm{mp} 97-99^{\circ} \mathrm{C}$ (from EtOA chexane); $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOA} \mathrm{c}) 0.67$; $[a]_{\mathrm{D}}^{20}-4.8$ (c 1.0 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{M} \mathrm{e}$, 481.1759. $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{PSi}_{2}$ requires $\mathrm{M}-\mathrm{Me}$ 481.1783); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1460(\mathrm{P}-\mathrm{Ph})$ and $1184(\mathrm{P}=0)$) $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 7.6-7.3 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $4.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4$, PhCH OSi), $4.30\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH} \mathrm{OSi}\right)$, $2.63(1 \mathrm{H}$, ddd, J 4, ${ }^{2} \int_{\text {PH }} 13$ and $\left.\left.{ }^{2}\right]_{\text {HH }} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.12\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}} 8\right.$ and ${ }^{2} \mathrm{~J}_{\mathrm{HH}}$ $\left.15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 0.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right)$ and $-0.17\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right)$; $\delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 131-126 (m, $\mathrm{Ph}_{2} \mathrm{PO}$ and Ph), 72-70 (m , $2 \times \mathrm{CHOSi}), 32.0^{-}\left(\mathrm{d}^{1}{ }^{1} \mathrm{pc}_{\mathrm{pc}} 73, \mathrm{PCH}_{2}\right), 0.1^{+}\left(\mathrm{SiM} \mathrm{e}_{3}\right)$ and 0.0^{+} $\left(\mathrm{SiM} \mathrm{e}_{3}\right) ; \mathrm{m} / \mathrm{z} 481.2\left(40 \%, \mathrm{M}^{+}-\mathrm{Me}\right), 317$ ($100, \mathrm{M}^{+}-$ $\mathrm{PhCHOSiM} \mathrm{e}_{3}$) and 201 ($50, \mathrm{Ph}_{2} \mathrm{PO}$). A nalysis of the 400 M Hz ${ }^{1}$ H N M R spectrum of this material in the presence of Pirkle's chiral shift reagent indicated that it had 74% ee.

(1S,2S)-1-P henyl-4-diphenylphosphinoyl-1,2-bis(trimethylsilyloxy)butane 10

By the general method described above, ($1 \mathrm{~S}, 2 \mathrm{~S}$)-1-phenyl-4-diphenylphosphinoylbutane-1,2-diol 7 ($31 \mathrm{mg}, 0.085 \mathrm{mmol}$) gave a crude product. Flash chromatography of this (EtOA C)
 $[a]_{0}^{20}+1.7$ (c 0.9 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{Me}$, 495.1942. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{PSi}_{2}$ requires $\mathrm{M}-\mathrm{Me}, 495.1941$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ 1437 ($\mathrm{P}-\mathrm{Ph}$) and $1169(\mathrm{P}=0)$) $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right.$) 7.7-7.1 (15 $\mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), $4.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5, \mathrm{CH} \mathrm{Ph}), 3.77(1 \mathrm{H}, \mathrm{td}, \mathrm{J}$ 5 and $7, \mathrm{CHOSi}), 2.26\left(1 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.17(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.7-1.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 0.01\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM}_{3}\right)$ and $-0.07\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 141-127 (m, $\mathrm{Ph}_{2} \mathrm{PO}$
and Ph), $78.0^{+}\left(\mathrm{CHOSiM} \mathrm{e}_{3}\right), 77.0^{+}\left(\mathrm{CHOSiM} \mathrm{e}_{3}\right), 28.0^{-}\left(\mathrm{d}^{1}{ }^{1} \mathrm{pc}\right.$ $72, \mathrm{PCH}_{2}$) $0.5^{+}\left(\mathrm{SiMe}_{3}\right)$ and $0.1^{+}\left(\mathrm{SiM} \mathrm{e}_{3}\right) ; \mathrm{m} / \mathrm{z} 495.2(40 \%$, M - Me), 331.1 ($100, \mathrm{M}$-PhCHOSiM e_{3}) and 73 ($95, \mathrm{SiM} \mathrm{e}_{3}$). Comparison of the $400 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ N M R spectra of the M osher's esters of this material and racemic material indicated that this sample had greater than 95% ee.

(1S,2R)-1-(D iphenylphosphinoyImethyl)-2-trimethylsilyloxycyclohexanol 9

By the general method described above, (1S,2S)-1-(diphenylphosphinoylmethyl)cyclohexane-1,2-diol 3 h (21 mg , 0.063 mmol) gave a crude product. Flash chromatography of this, eluting with EtOA c, gave the silyl ether $9(23 \mathrm{mg}, 88 \%)$ as needles, mp $150-151^{\circ} \mathrm{C}$ (from EtOA c-hexane); $\mathrm{R}_{\mathrm{f}}($ EtOAc) 0.52; [a] $]_{0}^{20}-4.8$ (c 0.8 in CHCl_{3}) (Found: $\mathrm{M}^{+}, 402.1782$. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{PO}_{3} \mathrm{Si}$ requires $\mathrm{M}, 402.1780$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3350$ $(\mathrm{OH}), 1432(\mathrm{P}-\mathrm{Ph})$ and $1187(\mathrm{P}=0)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}_{\mathrm{CDCl}}^{3}\right.$) $7.9-$ $7.4\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 3.65(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6$ and $9, \mathrm{CHOSi})$, $3.17(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.95\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{PH}} 9\right.$ and J $\left.12, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.36$ ($1 \mathrm{H}, \mathrm{dd}^{2}{ }^{2} \mathrm{~J}_{\mathrm{HH}} 12$ and $^{2} \mathrm{~J}_{\mathrm{PH}} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $2.12(1 \mathrm{H}, \mathrm{m}), 1.7-1.1$ ($7 \mathrm{H}, \mathrm{m}$) and $0.12\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right) ; \delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 135-127$ ($\mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), 75.9 ${ }^{-}\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{pc}} 8, \mathrm{CHOSi}\right), 74.0^{+}\left(\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{pc}} 4\right.$, $\mathrm{CHOH}), 37.8^{-}\left(\mathrm{d},{ }^{1} \mathrm{j}_{\mathrm{pc}} 71, \mathrm{PCH}_{2}\right), 36.7^{-}, 30.6^{-}, 23.9^{-}, 20.8^{-}$ and $0.1^{+}\left(\mathrm{SiM} \mathrm{e}_{3}\right) ; \mathrm{m} / \mathrm{z} 402.2\left(20 \%, \mathrm{M}^{+}\right)$. A nalysis of the 400 MHz ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectrum of this material in the presence of Pirkle's chiral shift reagent indicated that it had 60% ee

(2S,3R)-1-D iphenyIphosphinoyl-3-tert-butyldimethylsilyloxy-heptan-2-ol 11

By the general method described above, 2,6-dimethylpyridine ($239 \mathrm{mg}, 1.24 \mathrm{mmol}$) and tert-butyldimethylsilyl trifluoromethylsulfonate ($180 \mathrm{mg}, 0.68 \mathrm{mmol}$) were added dropwise to a solution of (2S,3R)-1-diphenylphosphinoylheptane-2,3-diol 3c ($103 \mathrm{mg}, 0.31 \mathrm{mmol}$) in dry dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter 16 h , the reaction mixture was diluted with water and extracted with dichloromethane $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with aqueous hydrochloric acid ($1.0 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 10 \mathrm{~cm}^{3}$), dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated to give a crude product which was purified by flash chromatography, eluting with EtOA c-hexane (1:1), to yield the silyl ether 11 (91 $\mathrm{mg}, 66 \%$) as an oil, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOA}) 0.83 ;[a]_{0}^{20}+30.9$ (c 1.8 in CHCl_{3} 76% ee) (Found: M^{+}, 446.2405. $\mathrm{C}_{25} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{PSi}$ requires M $446.2411)$; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3409(\mathrm{OH}), 1437(\mathrm{P}-\mathrm{Ph})$ and 1157 ($\mathrm{P}=0$) ; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 7.8-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), 4.34 (1 H, br s, OH), $3.98(1 \mathrm{H}, \mathrm{m}), 3.69(1 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2,7$ and $\left.{ }^{2} \mathrm{~J}_{\text {нн }} 15, \mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.37\left(1 \mathrm{H} \text {, ddd, J } 11,12 \text { and }{ }^{2}\right)_{\text {нн }} 15$, $\mathrm{PCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), 1.7-1.3 ($6 \mathrm{H}, \mathrm{m}$), $0.87(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{Me}), 0.79(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right),-0.01(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$) and $-0.25(3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$); $\delta_{\mathrm{c}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 134-129\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 74.1^{+}, 69.5^{+}$ (CHOH and CHOSi), 30.6^{-}($\mathrm{d},{ }^{1}{ }_{\mathrm{pc}} 71, \mathrm{PCH}_{2}$), $30.6^{-}, 28.3^{-}$, 25.7^{+}($\left.\mathrm{Bu}^{\mathrm{t}}\right), 22.9^{-}, 17.9^{-}\left(\mathrm{Bu}^{\mathrm{t}}\right), 14.1^{+}(\mathrm{Me}),-4.6^{+}(\mathrm{s}, \mathrm{SiMe})$ and $-4.7^{+}(\mathrm{s}, \mathrm{SiMe}) ; \mathrm{m} / \mathrm{z} 446.2\left(10 \%, \mathrm{M}^{+}\right)$, 431.2 ($70, \mathrm{M}-$ Me), 389.2 ($65, \mathrm{M}-\mathrm{Bu}$), 245.1 (100, $\mathrm{M}-\mathrm{Ph}_{2} \mathrm{PO}$) and 201.0 (60, $\mathrm{Ph}_{2} \mathrm{PO}$).

General procedure for H orner-W ittig eliminations

Potassium hydroxide ($126 \mathrm{mg}, 2.23 \mathrm{mmol}$) and the β-hydroxyphosphine oxide (1.0 mmol) were stirred in D M SO ($8 \mathrm{~cm}^{3}$) at $55^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was quenched with water $\left(10 \mathrm{~cm}^{3}\right)$ and extracted with ether ($3 \times 10 \mathrm{~cm}^{3}$) and the combined extracts were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product.

(S)-H ept-1-en-3-ol 1c

By the general method described above, (2R,3S)-1-diphenyl-phosphinoylheptane-2,3-diol 3c ($987 \mathrm{mg}, 2.97 \mathrm{mmol}$) and potassium hydroxide ($366 \mathrm{mg}, 6.54 \mathrm{mmol}$) gave a crude product, flash chromatography of which, eluting with light petroleum (bp $30-40^{\circ} \mathrm{C}$)-ether ($2: 1$) gave the allylic alcohol ic ($55 \mathrm{mg}, 18 \%$) as an oil, bp $152-154{ }^{\circ} \mathrm{C}$ (lit.,,$^{13 \mathrm{a}} 153-155^{\circ} \mathrm{C}$); R_{f}
(EtOAc) 0.67; $[a]_{D}^{20}-1.6$ (c 0.54 in CHCl_{3}) \{lit., ${ }^{36}-21.6$ for R isomer (c 1.02 in EtOH)\} (Found: M^{+}, 114.1044. $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{M}, 114.1044$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) 3341 (OH) and 1644 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 5.85(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 6,10$ and 16 , $\left.\mathrm{CH}_{2}=\mathrm{CH}\right), 5.20\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1\right.$ and $\left.16, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}=\mathrm{CH}\right), 5.10(1 \mathrm{H}$, dd, J 1 and $\left.10, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}=\mathrm{CH}\right), 4.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.15(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH})$ and $1.6-0.9\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right.$ and Me); $\delta_{\mathrm{c}}(63 \mathrm{M} \mathrm{Hz}$; $\left.\mathrm{CDCl}_{3}\right) 141.3^{+}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 114.5^{-}\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 73.3^{+}(\mathrm{CHOH})$, 36.7 ${ }^{-}$, 27.5-5 22.6^{-}and $14.0^{+}(\mathrm{Me}) ; \mathrm{m} / \mathrm{z} 114.1\left(5 \%, \mathrm{M}^{+}\right)$and 57.1 (100, $\mathrm{CH}_{2}=\mathrm{CHCHOH}$).

A ttempted H orner-W ittig elimination of phosphine oxide 11

By the general method described above, (2R,3S)-1-diphenyl-phosphinoyl-3-(tert-butyldimethylsilyloxy)heptan-2-ol 11 (138 $\mathrm{mg}, 0.31 \mathrm{mmol}$) and potassium hydroxide ($17 \mathrm{mg}, 0.31 \mathrm{mmol}$) gave a crude product after 1 h . F lash chromatography of this, eluting with light petroleum (bp $30-40^{\circ} \mathrm{C}$)-ether ($2: 1$) gave the ketone $17(\mathrm{R}=\mathrm{Bu})(36 \mathrm{mg}, 26 \%)$ as an oil, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.30$ (Found: $\mathrm{M}^{+}, 314.1432 . \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}, 314.1435$); $v_{\text {max }} /$ $\mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 1714(\mathrm{C}=0)$, $1437(\mathrm{P}-\mathrm{Ph})$ and $1173(\mathrm{P}=0)$; $\delta_{\mathrm{H}}(400$
 $2.53\left(2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{m}\right), 2.34\left[2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7,(\mathrm{CO}) \mathrm{CH}_{2}\right], 1.46(2 \mathrm{H}$, quin, J $7, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$), $1.24\left(2 \mathrm{H}\right.$, sextet, J $7, \mathrm{CH}_{2} \mathrm{M} \mathrm{e}$) and 0.86 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{Me}$); $\delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 208.8- (C=0), 134-128 ($\mathrm{m}, \mathrm{Ph} \mathrm{P}_{2} \mathrm{PO}$), 42.5-$\left(\mathrm{CH}_{2} \mathrm{CO}\right), 34.2^{-}\left(\mathrm{d},{ }^{2}{ }^{2} \mathrm{pc} 2, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), 25.9^{-}$, $\left.23.3^{-}\left(\mathrm{d}_{1}{ }^{1}\right)_{\mathrm{pc}} 73, \mathrm{PCH}_{2}\right), 22.3^{-}$and $13.8^{+}(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z} 314.1$ (20\%, M^{+}), 285.1 (100, M - Et), 272.1 ($75, \mathrm{M}-\mathrm{CO}$) and 202.1 (100, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$.

Attempted H orner-W ittig elimination of diol 3d

By the general method described above, (15,2R)-1-phenyl-3-diphenylphosphinoylpropane-1,2-diol 3d ($1.0 \mathrm{~g}, 2.9 \mathrm{mmol}$) and potassium hydroxide ($354 \mathrm{mg}, 6.31 \mathrm{mmol}$) gave a crude product. Flash chromatography of this, eluting with $2: 1$ light petroleum ($\mathrm{bp} 30-40^{\circ} \mathrm{C}$)-ether gave phenyl ketone $17(\mathrm{R}=\mathrm{Ph})$ ($305 \mathrm{mg}, 31 \%$) as an oil, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 3.21$ (Found: M^{+}, 334.1123. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{M}, 334.1123$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right)$ $1685(\mathrm{C}=0), 1435(\mathrm{P}-\mathrm{Ph})$ and $1176(\mathrm{P}=0) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 8.0-7.4 ($15 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ and Ph), 3.28 ($2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{m}$) and 2.78 ($2 \mathrm{H}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{m}$); $\delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3\right.$) $197.8^{-}(\mathrm{C}=0)$), 135$127\left(\mathrm{~m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and Ph$), 30.7^{-}\left(\mathrm{CH}_{2} \mathrm{CO}\right)$ and $23.7^{-}\left(\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{pc}} 74\right.$, $\left.\mathrm{PCH}_{2}\right) ; \mathrm{m} / \mathrm{z} 334.1\left(80 \%, \mathrm{M}^{+}\right)$, 306.1 (90), 201.1 (90, $\mathrm{Ph}_{2} \mathrm{PO}$), 105 (100, PhCO) and 77 (90, Ph).

(S)-2-Phenylbut-3-en-2-ol le

By the general method described above, (2S,3R)-3-phenyl-1-diphenylphosphinoylbutane-2,3-diol 3 e ($29 \mathrm{mg}, 79 \mu \mathrm{~mol}$) and potassium hydroxide gave a crude product which was purified by flash chromatography, eluting with ether, to give the allylic alcohol 1 e ($5.3 \mathrm{mg}, 44 \%$) as an oil, $\mathrm{R}_{\mathrm{f}}(3: 1$ hexane-EtOA c) 0.28 ; $[a]_{0}^{20}-2.1$ (c 0.38 in CHCl_{3}) (Found: M^{+}, 148.0888. $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{M}, 148.0888$); $v_{\text {max }} / \mathrm{cm}^{-1}$ (neat) $3420(\mathrm{OH})$ and 1638 ($\mathrm{C}=\mathrm{C}$); $\delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 7.5-7.2(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.16(1 \mathrm{H}$, dd, J 11 and $18, \mathrm{CH}=\mathrm{CH}_{2}$), 5.27 (1 H , dd, J 1 and 18 , $\mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}$), $5.14\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1\right.$ and $\left.11, \mathrm{CH}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 1.91(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$ and $1.66(3 \mathrm{H}, \mathrm{s}, \mathrm{M} \mathrm{e})$; $\delta_{\mathrm{c}}\left(63 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 146.4^{-}$, $144.9^{+}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}\right), 128.2^{+}, 127.0^{+}, 125.1^{+}, 112.3^{-}, 74.7^{-}(\mathrm{COH})$ and $29.3^{+}(\mathrm{M} \mathrm{e}) ; \mathrm{m} / \mathrm{z} 148.1\left(10 \%, \mathrm{M}^{+}\right)$and $77.0(100, \mathrm{Ph})$.

(R)-2-M ethylenecyclohexanol 1h

Sodium hydride (60% dispersion in oil; $49 \mathrm{mg}, 1.22 \mathrm{mmol}$) was added to a stirred solution of diol $3 \mathrm{~h}(200 \mathrm{mg}, 0.61 \mathrm{mmol})$ in dry DM F $\left(7 \mathrm{~cm}^{3}\right)$ at $20^{\circ} \mathrm{C}$. The reaction was stirred at $60^{\circ} \mathrm{C}$ for 1 h and then cooled to $20^{\circ} \mathrm{C}$, diluted with brine ($10 \mathrm{~cm}^{3}$) and extracted into ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with water ($10 \mathrm{~cm}^{3}$) and saturated brine $\left(10 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated under reduced pressure to give a crude product which was purified by flash chromatography, eluting with hexane-EtOAc (1:1), to give the allylic alcohol $\mathbf{1 h}(40 \mathrm{mg}, 60 \%)$ as a liquid, $\mathrm{R}_{\mathrm{f}}(1: 1$ hexane-

EtOAc) 0.55 ; $[a]_{D}^{20}-1.2$ (c 1.4 in CHCl_{3}) $\left\{l i \mathrm{it} .,^{37}+10.6\right.$ for S isomer (c 1.76 in CHCl_{3}) \}; $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3358(\mathrm{OH})$ and $1653(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(250 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 4.87\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)$, $4.74\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C}=\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 4.08(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$ and $2.45-1.0$ $\left(9 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{2}\right.$ and OH$) ; \delta_{\mathrm{c}}\left(63 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 151.5^{-}$ $\left(\mathrm{CH}_{2}=\mathrm{C}\right), 105.0^{-}\left(\mathrm{CH}_{2}=\mathrm{C}\right), 72.5^{+}(\mathrm{CHOH}), 36.5^{-}, 33.4^{-}, 29.6^{-}$ and 27.7^{-}. Integration of the $235 \mathrm{M} \mathrm{Hz}^{19} \mathrm{~F} \mathrm{~N} \mathrm{M} \mathrm{R} \mathrm{spectrum} \mathrm{of}$ the M osher's esters of this material showed that it had 12% ee.

Attempted H orner-W ittig elimination of diol 3d using D BU in DMSO

A solution of diol $\mathbf{3 d}(95 \mathrm{mg}, 0.27 \mathrm{mmol})$ and DBU ($82 \mathrm{mg}, 0.54$ $\mathrm{mmol})$ in DM SO $\left(2 \mathrm{~cm}^{3}\right)$ was stirred at $50^{\circ} \mathrm{C}$ for 2 days. The reaction mixture was quenched with water ($5 \mathrm{~cm}^{3}$) and extracted into ether $\left(3 \times 5 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and evaporated to give a crude product, analysis of the crude product by 400 M Hz ${ }^{1} H N M R$ spectroscopy showed that only starting material and residual D M SO were present.

Attempted elimination of disilyl ether 8c using TBAF in THF

A solution of disilyl ether 8 C ($155 \mathrm{mg}, 0.30 \mathrm{mmol}$) and TBAF ($1.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in THF; $0.85 \mathrm{~cm}^{3}$) in dry THF ($5 \mathrm{~cm}^{3}$) was refluxed for 16 h . The reaction mixture was quenched with water ($10 \mathrm{~cm}^{3}$) and extracted into ether ($3 \times 10 \mathrm{~cm}^{3}$) and the combined extracts were dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and evaporated to give a crude product. Flash chromatography of this, eluting with EtOA c, gave the phenyl ketone $17(\mathrm{R}=\mathrm{Ph})(59 \mathrm{mg}, 39 \%)$ as an oil, spectroscopically identical with that obtained previously.

References

1 J. Clayden, A. B. M cElroy and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1995, 1913.
2 J. Clayden and S. Warren, A ngew. Chem., Int. Ed. Engl., 1996, 35, 241.

3 H. C. K olb, M. S. VanN ieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.
4 Preliminary communication: A. N elson, P. O'Brien and S. Warren, Tetrahedron Lett., 1995, 36, 2685.
5 (a) H. C. Kolb, P. G. A ndersson and K. B. Sharpless, J. Am. Chem. Soc., 1994, 116, 1278; (b) P.-O. N orrby, H. C. K olb and K. B. Sharpless, J. A m. Chem. Soc., 1994, 116, 8470; (c) E. J. Corey and M. C. N oe, J. A m. C hem. Soc., 1996, 118, 11038.
6 A. N elson and S. Warren, Tetrahedron L ett., 1996, 37, 1501.
7 (a) G. Chelucci, M. A. Cabras, C. Botteghi and M. M archetti, Tetrahedron: A symmetry, 1994, 5, 299; (b) C. Basoli, C. Botteghi, M. A . Cabras, G. Chelucci and M. M archetti, J. Organomet. C hem., 1995, 488, C20.
8 (a) S. K. A rmstrong, E. W. Collington, J. G. K night, A . N aylor and S. Warren, J. C hem. Soc., Perkin Trans. 1, 1993, 1433; (b) N. F eeder, G. H utton and S. Warren, Tetrahedron L ett., 1994, 35, 5911.

9 M. P. Savage and S. Trippett, J. C hem. Soc. C, 1966, 1842.
10 (a) L. Duhamel, S. Fouquay and J.-C. Plaquevent, Tetrahedron L ett., 1986, 27, 4975; (b) E. Vedejs, N. Lee and S. T. Sakata, J. A m. Chem. Soc., 1994, 116, 2175; (c) K. Ishihara, M. K aneeda and H. Yamamoto, J. A m. Chem. Soc., 1994, 116, 11179; (d) F. Cavelier, S. Gomez, R . Jacquier and J. Verducci, Tetrahedron: A symmetry, 1993, 4, 2501.
11 (a) E. Vedejs and J. A. G arcia-R ivas, J. Org. C hem., 1994, 59, 6517; (b) P. O'Brien and S. Warren, Synlett, 1996, 579.

12 T. D. N elson and A. I. M eyers, Tetrahedron L ett., 1994, 35, 3259.
13 (a) R. I. Johnson and J. K enyon, J. Chem. Soc., 1932, 722; (b) J. A. K atzenellenbogen and A. L. Crumrine, J. Am. Chem. Soc.,

1976, 98, 4925; (c) T. H arada, H. K urokawa, Y. K agamihara, S. Tanaka, A. Inoue and A. Oku, J. Org. Chem., 1992, 57, 1412; (d) J. Colonge and J. C. Brunie, Bull. Soc. Chim. Fr., 1963, 42; (e) C. S. M arvel and R. G. Woolford, J. O rg. C hem., 1958, 23, 1658.

14 (a) W. C. Still and A. M itra, J. Am. Chem. Soc., 1978, 100, 1927; (b) K.-K. Chan and G. Saucy, J. Org. Chem., 1977, 42, 3828; (c) G. Büchi, M. Cushman and H. Wüest, J. Am. Chem. Soc., 1974, 96, 5563.
15 E. C. A shby, R. G urumurthy and R. W. R idlehuber, J. Org. Chem., 1993, 58, 5932.
16 M. R. Binns, R. K. Haynes, A. G. K atsifis, P. A. Schober and S. C. Vonwiller, J. A m. Chem. Soc., 1988, 110, 5411.

17 K. B. Sharpless, W. A mberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K .-S. Jeong, H.-L. K wong, K. M orikawa, Z.-M . Wang, D. X u and X.-L. Zhang, J. Org. Chem., 1992, 57, 2768.

18 J. Eames, H. J. M itchell, A. Nelson, P. O’Brien, S. Warren and P. Wyatt, Tetrahedron L ett., 1995, 36, 1719.

19 Lewis basic groups are well known to direct osmylations by coordination to osmium tetroxide: (a) F. M. Hauser, S. R. Ellenberger, J. C. Clardy and L. S. Bass, J. A m. Chem. Soc., 1984, 106, 2458; (b) S. B. K ing and B. Ganem, J. A m. Chem. Soc., 1991, 113, 5089; (c) A. C. Peterson and J. M. Cook, Tetrahedron Lett., 1994, 5, 2651.
20 W. H. Pirkle, D. L. Sikkenga and M. S. Pavlin, J. Org. Chem., 1977, 42, 384.
21 (a) P. O’Brien and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1996, 2117; (b) P. O'Brien and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1996, 2129.
22 J. Ukai, Y. Ikeda, N. Ikeda and H. Yamamoto, Tetrahedron Lett., 1983, 24, 4029.
23 A. Bell, A. H. Davidson, C. Earnshaw, H. K . N orrish, R. S. Torr, D. B. Trowbridge and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1983, 2879.
24 S. Okamoto, K. Tani, F. Sato, K. B. Sharpless and D. Zargarian, Tetrahedron Lett., 1993, 34, 2509.
25 E. N. Jacobsen, I. M arkó, W. S. M ungall, G. Schröder and K . B. Sharpless, J. A m. C hem. Soc., 1988, 110, 1968.
26 (a) J. A. D ale, D. L. Dull and H. S. M osher, J. Org. Chem., 1969, 34, 2543; (b) Y. G oldberg and H. A Iper, J. Org. C hem., 1992, 57, 3731; (c) D. E. Ward and C. K . R hee, Tetrahedron Lett., 1991, 32, 7165.

27 L. Wang and K. B. Sharpless, J. A m. C hem. Soc., 1992, 114, 7568.
28 H. C. K olb, P. G. A ndersson and K. B. Sharpless, J. Am. Chem. Soc., 1994, 116, 1278.
29 (a) A. D. Buss, W. B. Cruse, O. K ennard and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1984, 243; (b) A. D. Buss, S. Warren, J. S. L eake and G. H. W hitham, J. C hem. Soc., Perkin Trans. 1, 1983, 2215; (c) N. J. S. H armat and S. Warren, Tetrahedron Lett., 1990, 31, 2743.

30 J. Clayden, A. Nelson and S. Warren, Tetrahedron Lett., 1997, 38, 3471.

31 J. Park and S. F. Petersen, J. Org. C hem., 1990, 55, 5924.
32 (a) N. Tanno and S. Terashima, Chem. Pharm. Bull., 1983, 31, 837; (b) D. Seebach, G. Crass, E.-M. Wilka, D. Hilvert and E. Brunner, H elv. Chim. A cta, 1979, 62, 2695.
33 V. S. M artin, S. S. Woodard, T. K atsuki, Y. Y amada, M . I keda and K. B. Sharpless, J. A m. Chem. Soc., 1981, 103, 6237.

34 (a) Y. G ao, R . M. H anson, J. M . K lunder, S. Y. K o, H. M asamune and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765; (b) B. E. Rossiter, Synthetic Aspects and Applications of A symmetric Epoxidation, in Asymmetric Synthesis, ed. J. D. M orrison, A cademic Press, 1985, vol. 5, ch. 7, p. 193.
35 W. C. Still, M. K ahn and A. M itra, J. Org. C hem., 1932, 722.
36 H. Suzuki, A . Tanaka and K . Y amashitu, A gric. Biol. Chem., 1987, 51, 3369.
37 A. K umar and D. C. Dittmer, Tetrahedron L ett., 1994, 35, 5583.

Paper 7/00374I
Received 15th J anuary 1997
A ccepted 23rd M ay 1997

[^0]: ${ }^{\mathrm{a}} \mathrm{M}$ ethods: $\mathrm{A}: \mathrm{AD}-\operatorname{mix} \alpha\left(1.4 \mathrm{~g} \mathrm{mmol}^{-\mathbf{1}}\right), \mathrm{M} \mathrm{eSO}_{2} \mathrm{NH}_{2}(1.0$ equiv. $), 0^{\circ} \mathrm{C}$; $\mathrm{B}: \mathrm{AD}-\operatorname{mix} \beta\left(1.4 \mathrm{~g} \mathrm{mmol}{ }^{-1}\right), \mathrm{M} \mathrm{eSO}_{2} \mathrm{NH}_{2}\left(1.0\right.$ equiv.), $0^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Sense of asymmetric induction uncertain. ${ }^{\mathrm{c}} 61 \%$ yield based on recovered starting material. ${ }^{\mathrm{d}} 53 \%$ completion by ${ }^{1} \mathrm{H} N \mathrm{NR}$ R. ${ }^{\mathbf{e}} \mathrm{N}$ ot determined. ${ }^{\mathrm{f}} \mathrm{M}$ ethanesulfonamide omitted. ${ }^{9} 3$ days at $0^{\circ} \mathrm{C}$ and 3 days at $20^{\circ} \mathrm{C}$.

[^1]: II Sharpless has reported that OsCl_{3} is a suitable osmium source in AD reactions. ${ }^{25}$

[^2]: || A ttempted protections of vinyl phosphine oxides 13 under basic conditions often promotes tautomerisation to ketones $\mathbf{1 7 . 3 0}$

